"""Config flow for Anthropic integration.""" from __future__ import annotations from collections.abc import Mapping from functools import partial import logging from types import MappingProxyType from typing import Any import anthropic import voluptuous as vol from homeassistant.config_entries import ( ConfigEntry, ConfigFlow, ConfigFlowResult, OptionsFlow, ) from homeassistant.const import CONF_API_KEY, CONF_LLM_HASS_API from homeassistant.core import HomeAssistant from homeassistant.helpers import llm from homeassistant.helpers.selector import ( NumberSelector, NumberSelectorConfig, SelectOptionDict, SelectSelector, SelectSelectorConfig, TemplateSelector, ) from .const import ( CONF_CHAT_MODEL, CONF_MAX_TOKENS, CONF_PROMPT, CONF_RECOMMENDED, CONF_TEMPERATURE, CONF_THINKING_BUDGET, DOMAIN, RECOMMENDED_CHAT_MODEL, RECOMMENDED_MAX_TOKENS, RECOMMENDED_TEMPERATURE, RECOMMENDED_THINKING_BUDGET, ) _LOGGER = logging.getLogger(__name__) STEP_USER_DATA_SCHEMA = vol.Schema( { vol.Required(CONF_API_KEY): str, } ) RECOMMENDED_OPTIONS = { CONF_RECOMMENDED: True, CONF_LLM_HASS_API: [llm.LLM_API_ASSIST], CONF_PROMPT: llm.DEFAULT_INSTRUCTIONS_PROMPT, } async def validate_input(hass: HomeAssistant, data: dict[str, Any]) -> None: """Validate the user input allows us to connect. Data has the keys from STEP_USER_DATA_SCHEMA with values provided by the user. """ client = await hass.async_add_executor_job( partial(anthropic.AsyncAnthropic, api_key=data[CONF_API_KEY]) ) await client.models.list(timeout=10.0) class AnthropicConfigFlow(ConfigFlow, domain=DOMAIN): """Handle a config flow for Anthropic.""" VERSION = 1 async def async_step_user( self, user_input: dict[str, Any] | None = None ) -> ConfigFlowResult: """Handle the initial step.""" errors = {} if user_input is not None: try: await validate_input(self.hass, user_input) except anthropic.APITimeoutError: errors["base"] = "timeout_connect" except anthropic.APIConnectionError: errors["base"] = "cannot_connect" except anthropic.APIStatusError as e: errors["base"] = "unknown" if ( isinstance(e.body, dict) and (error := e.body.get("error")) and error.get("type") == "authentication_error" ): errors["base"] = "authentication_error" except Exception: _LOGGER.exception("Unexpected exception") errors["base"] = "unknown" else: return self.async_create_entry( title="Claude", data=user_input, options=RECOMMENDED_OPTIONS, ) return self.async_show_form( step_id="user", data_schema=STEP_USER_DATA_SCHEMA, errors=errors or None ) @staticmethod def async_get_options_flow( config_entry: ConfigEntry, ) -> OptionsFlow: """Create the options flow.""" return AnthropicOptionsFlow(config_entry) class AnthropicOptionsFlow(OptionsFlow): """Anthropic config flow options handler.""" def __init__(self, config_entry: ConfigEntry) -> None: """Initialize options flow.""" self.last_rendered_recommended = config_entry.options.get( CONF_RECOMMENDED, False ) async def async_step_init( self, user_input: dict[str, Any] | None = None ) -> ConfigFlowResult: """Manage the options.""" options: dict[str, Any] | MappingProxyType[str, Any] = self.config_entry.options errors: dict[str, str] = {} if user_input is not None: if user_input[CONF_RECOMMENDED] == self.last_rendered_recommended: if not user_input.get(CONF_LLM_HASS_API): user_input.pop(CONF_LLM_HASS_API, None) if user_input.get( CONF_THINKING_BUDGET, RECOMMENDED_THINKING_BUDGET ) >= user_input.get(CONF_MAX_TOKENS, RECOMMENDED_MAX_TOKENS): errors[CONF_THINKING_BUDGET] = "thinking_budget_too_large" if not errors: return self.async_create_entry(title="", data=user_input) else: # Re-render the options again, now with the recommended options shown/hidden self.last_rendered_recommended = user_input[CONF_RECOMMENDED] options = { CONF_RECOMMENDED: user_input[CONF_RECOMMENDED], CONF_PROMPT: user_input[CONF_PROMPT], CONF_LLM_HASS_API: user_input.get(CONF_LLM_HASS_API), } suggested_values = options.copy() if not suggested_values.get(CONF_PROMPT): suggested_values[CONF_PROMPT] = llm.DEFAULT_INSTRUCTIONS_PROMPT if ( suggested_llm_apis := suggested_values.get(CONF_LLM_HASS_API) ) and isinstance(suggested_llm_apis, str): suggested_values[CONF_LLM_HASS_API] = [suggested_llm_apis] schema = self.add_suggested_values_to_schema( vol.Schema(anthropic_config_option_schema(self.hass, options)), suggested_values, ) return self.async_show_form( step_id="init", data_schema=schema, errors=errors or None, ) def anthropic_config_option_schema( hass: HomeAssistant, options: Mapping[str, Any], ) -> dict: """Return a schema for Anthropic completion options.""" hass_apis: list[SelectOptionDict] = [ SelectOptionDict( label=api.name, value=api.id, ) for api in llm.async_get_apis(hass) ] schema = { vol.Optional(CONF_PROMPT): TemplateSelector(), vol.Optional( CONF_LLM_HASS_API, ): SelectSelector(SelectSelectorConfig(options=hass_apis, multiple=True)), vol.Required( CONF_RECOMMENDED, default=options.get(CONF_RECOMMENDED, False) ): bool, } if options.get(CONF_RECOMMENDED): return schema schema.update( { vol.Optional( CONF_CHAT_MODEL, default=RECOMMENDED_CHAT_MODEL, ): str, vol.Optional( CONF_MAX_TOKENS, default=RECOMMENDED_MAX_TOKENS, ): int, vol.Optional( CONF_TEMPERATURE, default=RECOMMENDED_TEMPERATURE, ): NumberSelector(NumberSelectorConfig(min=0, max=1, step=0.05)), vol.Optional( CONF_THINKING_BUDGET, default=RECOMMENDED_THINKING_BUDGET, ): int, } ) return schema