2019-04-25 03:09:01 +00:00
|
|
|
"""Support for IQVIA sensors."""
|
|
|
|
import logging
|
|
|
|
from statistics import mean
|
|
|
|
|
2019-04-26 17:06:46 +00:00
|
|
|
import numpy as np
|
|
|
|
|
2019-04-25 03:09:01 +00:00
|
|
|
from homeassistant.components.iqvia import (
|
2019-07-31 19:25:30 +00:00
|
|
|
DATA_CLIENT,
|
|
|
|
DOMAIN,
|
|
|
|
TYPE_ALLERGY_FORECAST,
|
|
|
|
TYPE_ALLERGY_INDEX,
|
2019-12-09 10:14:08 +00:00
|
|
|
TYPE_ALLERGY_OUTLOOK,
|
2019-07-31 19:25:30 +00:00
|
|
|
TYPE_ALLERGY_TODAY,
|
|
|
|
TYPE_ALLERGY_TOMORROW,
|
|
|
|
TYPE_ASTHMA_FORECAST,
|
|
|
|
TYPE_ASTHMA_INDEX,
|
|
|
|
TYPE_ASTHMA_TODAY,
|
|
|
|
TYPE_ASTHMA_TOMORROW,
|
|
|
|
TYPE_DISEASE_FORECAST,
|
|
|
|
TYPE_DISEASE_INDEX,
|
|
|
|
TYPE_DISEASE_TODAY,
|
|
|
|
IQVIAEntity,
|
|
|
|
)
|
2019-04-25 03:09:01 +00:00
|
|
|
from homeassistant.const import ATTR_STATE
|
2020-03-17 05:58:50 +00:00
|
|
|
from homeassistant.core import callback
|
|
|
|
|
|
|
|
from .const import SENSORS
|
2019-04-25 03:09:01 +00:00
|
|
|
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
|
2019-07-31 19:25:30 +00:00
|
|
|
ATTR_ALLERGEN_AMOUNT = "allergen_amount"
|
|
|
|
ATTR_ALLERGEN_GENUS = "allergen_genus"
|
|
|
|
ATTR_ALLERGEN_NAME = "allergen_name"
|
|
|
|
ATTR_ALLERGEN_TYPE = "allergen_type"
|
|
|
|
ATTR_CITY = "city"
|
|
|
|
ATTR_OUTLOOK = "outlook"
|
|
|
|
ATTR_RATING = "rating"
|
|
|
|
ATTR_SEASON = "season"
|
|
|
|
ATTR_TREND = "trend"
|
|
|
|
ATTR_ZIP_CODE = "zip_code"
|
|
|
|
|
|
|
|
RATING_MAPPING = [
|
|
|
|
{"label": "Low", "minimum": 0.0, "maximum": 2.4},
|
|
|
|
{"label": "Low/Medium", "minimum": 2.5, "maximum": 4.8},
|
|
|
|
{"label": "Medium", "minimum": 4.9, "maximum": 7.2},
|
|
|
|
{"label": "Medium/High", "minimum": 7.3, "maximum": 9.6},
|
|
|
|
{"label": "High", "minimum": 9.7, "maximum": 12},
|
|
|
|
]
|
|
|
|
|
|
|
|
TREND_FLAT = "Flat"
|
|
|
|
TREND_INCREASING = "Increasing"
|
|
|
|
TREND_SUBSIDING = "Subsiding"
|
|
|
|
|
|
|
|
|
2019-05-09 16:11:51 +00:00
|
|
|
async def async_setup_entry(hass, entry, async_add_entities):
|
|
|
|
"""Set up IQVIA sensors based on a config entry."""
|
|
|
|
iqvia = hass.data[DOMAIN][DATA_CLIENT][entry.entry_id]
|
2019-04-25 03:09:01 +00:00
|
|
|
|
2019-04-26 17:06:46 +00:00
|
|
|
sensor_class_mapping = {
|
|
|
|
TYPE_ALLERGY_FORECAST: ForecastSensor,
|
|
|
|
TYPE_ALLERGY_TODAY: IndexSensor,
|
|
|
|
TYPE_ALLERGY_TOMORROW: IndexSensor,
|
|
|
|
TYPE_ASTHMA_FORECAST: ForecastSensor,
|
|
|
|
TYPE_ASTHMA_TODAY: IndexSensor,
|
|
|
|
TYPE_ASTHMA_TOMORROW: IndexSensor,
|
|
|
|
TYPE_DISEASE_FORECAST: ForecastSensor,
|
2019-04-29 15:06:23 +00:00
|
|
|
TYPE_DISEASE_TODAY: IndexSensor,
|
2019-04-26 17:06:46 +00:00
|
|
|
}
|
|
|
|
|
2020-03-17 05:58:50 +00:00
|
|
|
async_add_entities(
|
|
|
|
[
|
|
|
|
sensor_class_mapping[sensor_type](
|
|
|
|
iqvia, sensor_type, name, icon, iqvia.zip_code
|
|
|
|
)
|
|
|
|
for sensor_type, (name, icon) in SENSORS.items()
|
|
|
|
]
|
|
|
|
)
|
2019-04-25 03:09:01 +00:00
|
|
|
|
|
|
|
|
|
|
|
def calculate_trend(indices):
|
|
|
|
"""Calculate the "moving average" of a set of indices."""
|
2019-04-27 15:17:57 +00:00
|
|
|
index_range = np.arange(0, len(indices))
|
|
|
|
index_array = np.array(indices)
|
|
|
|
linear_fit = np.polyfit(index_range, index_array, 1)
|
|
|
|
slope = round(linear_fit[0], 2)
|
2019-04-25 03:09:01 +00:00
|
|
|
|
2019-04-27 15:17:57 +00:00
|
|
|
if slope > 0:
|
2019-04-25 03:09:01 +00:00
|
|
|
return TREND_INCREASING
|
2019-04-27 15:17:57 +00:00
|
|
|
|
|
|
|
if slope < 0:
|
|
|
|
return TREND_SUBSIDING
|
|
|
|
|
|
|
|
return TREND_FLAT
|
2019-04-25 03:09:01 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ForecastSensor(IQVIAEntity):
|
|
|
|
"""Define sensor related to forecast data."""
|
|
|
|
|
2020-03-17 05:58:50 +00:00
|
|
|
@callback
|
|
|
|
def update_from_latest_data(self):
|
2019-04-25 03:09:01 +00:00
|
|
|
"""Update the sensor."""
|
2020-03-17 05:58:50 +00:00
|
|
|
if not self._iqvia.data.get(self._type):
|
2019-04-25 03:09:01 +00:00
|
|
|
return
|
|
|
|
|
2019-07-31 19:25:30 +00:00
|
|
|
data = self._iqvia.data[self._type].get("Location")
|
|
|
|
if not data or not data.get("periods"):
|
2019-04-25 03:09:01 +00:00
|
|
|
return
|
|
|
|
|
2019-07-31 19:25:30 +00:00
|
|
|
indices = [p["Index"] for p in data["periods"]]
|
2019-04-25 03:09:01 +00:00
|
|
|
average = round(mean(indices), 1)
|
|
|
|
[rating] = [
|
2019-07-31 19:25:30 +00:00
|
|
|
i["label"]
|
|
|
|
for i in RATING_MAPPING
|
|
|
|
if i["minimum"] <= average <= i["maximum"]
|
2019-04-25 03:09:01 +00:00
|
|
|
]
|
|
|
|
|
2019-07-31 19:25:30 +00:00
|
|
|
self._attrs.update(
|
|
|
|
{
|
|
|
|
ATTR_CITY: data["City"].title(),
|
|
|
|
ATTR_RATING: rating,
|
|
|
|
ATTR_STATE: data["State"],
|
|
|
|
ATTR_TREND: calculate_trend(indices),
|
|
|
|
ATTR_ZIP_CODE: data["ZIP"],
|
|
|
|
}
|
|
|
|
)
|
2019-04-25 03:09:01 +00:00
|
|
|
|
2019-04-26 17:06:46 +00:00
|
|
|
if self._type == TYPE_ALLERGY_FORECAST:
|
2019-04-25 03:09:01 +00:00
|
|
|
outlook = self._iqvia.data[TYPE_ALLERGY_OUTLOOK]
|
2019-07-31 19:25:30 +00:00
|
|
|
self._attrs[ATTR_OUTLOOK] = outlook.get("Outlook")
|
|
|
|
self._attrs[ATTR_SEASON] = outlook.get("Season")
|
2019-04-25 03:09:01 +00:00
|
|
|
|
|
|
|
self._state = average
|
|
|
|
|
|
|
|
|
|
|
|
class IndexSensor(IQVIAEntity):
|
|
|
|
"""Define sensor related to indices."""
|
|
|
|
|
2020-03-17 05:58:50 +00:00
|
|
|
@callback
|
|
|
|
def update_from_latest_data(self):
|
2019-04-25 03:09:01 +00:00
|
|
|
"""Update the sensor."""
|
|
|
|
if not self._iqvia.data:
|
|
|
|
return
|
|
|
|
|
2020-02-24 20:02:33 +00:00
|
|
|
try:
|
|
|
|
if self._type in (TYPE_ALLERGY_TODAY, TYPE_ALLERGY_TOMORROW):
|
|
|
|
data = self._iqvia.data[TYPE_ALLERGY_INDEX].get("Location")
|
|
|
|
elif self._type in (TYPE_ASTHMA_TODAY, TYPE_ASTHMA_TOMORROW):
|
|
|
|
data = self._iqvia.data[TYPE_ASTHMA_INDEX].get("Location")
|
|
|
|
elif self._type == TYPE_DISEASE_TODAY:
|
|
|
|
data = self._iqvia.data[TYPE_DISEASE_INDEX].get("Location")
|
|
|
|
except KeyError:
|
2019-04-25 03:09:01 +00:00
|
|
|
return
|
|
|
|
|
2019-07-31 19:25:30 +00:00
|
|
|
key = self._type.split("_")[-1].title()
|
2020-02-24 20:02:33 +00:00
|
|
|
|
|
|
|
try:
|
|
|
|
[period] = [p for p in data["periods"] if p["Type"] == key]
|
|
|
|
except ValueError:
|
|
|
|
return
|
|
|
|
|
2019-04-25 03:09:01 +00:00
|
|
|
[rating] = [
|
2019-07-31 19:25:30 +00:00
|
|
|
i["label"]
|
|
|
|
for i in RATING_MAPPING
|
|
|
|
if i["minimum"] <= period["Index"] <= i["maximum"]
|
2019-04-25 03:09:01 +00:00
|
|
|
]
|
|
|
|
|
2019-07-31 19:25:30 +00:00
|
|
|
self._attrs.update(
|
|
|
|
{
|
|
|
|
ATTR_CITY: data["City"].title(),
|
|
|
|
ATTR_RATING: rating,
|
|
|
|
ATTR_STATE: data["State"],
|
|
|
|
ATTR_ZIP_CODE: data["ZIP"],
|
|
|
|
}
|
|
|
|
)
|
2019-04-25 03:09:01 +00:00
|
|
|
|
2019-04-27 05:28:55 +00:00
|
|
|
if self._type in (TYPE_ALLERGY_TODAY, TYPE_ALLERGY_TOMORROW):
|
2019-07-31 19:25:30 +00:00
|
|
|
for idx, attrs in enumerate(period["Triggers"]):
|
2019-04-25 03:09:01 +00:00
|
|
|
index = idx + 1
|
2019-07-31 19:25:30 +00:00
|
|
|
self._attrs.update(
|
|
|
|
{
|
2019-09-03 15:27:14 +00:00
|
|
|
f"{ATTR_ALLERGEN_GENUS}_{index}": attrs["Genus"],
|
|
|
|
f"{ATTR_ALLERGEN_NAME}_{index}": attrs["Name"],
|
|
|
|
f"{ATTR_ALLERGEN_TYPE}_{index}": attrs["PlantType"],
|
2019-07-31 19:25:30 +00:00
|
|
|
}
|
|
|
|
)
|
2019-04-27 05:28:55 +00:00
|
|
|
elif self._type in (TYPE_ASTHMA_TODAY, TYPE_ASTHMA_TOMORROW):
|
2019-07-31 19:25:30 +00:00
|
|
|
for idx, attrs in enumerate(period["Triggers"]):
|
2019-04-25 03:09:01 +00:00
|
|
|
index = idx + 1
|
2019-07-31 19:25:30 +00:00
|
|
|
self._attrs.update(
|
|
|
|
{
|
2019-09-03 15:27:14 +00:00
|
|
|
f"{ATTR_ALLERGEN_NAME}_{index}": attrs["Name"],
|
|
|
|
f"{ATTR_ALLERGEN_AMOUNT}_{index}": attrs["PPM"],
|
2019-07-31 19:25:30 +00:00
|
|
|
}
|
|
|
|
)
|
2019-04-29 15:06:23 +00:00
|
|
|
elif self._type == TYPE_DISEASE_TODAY:
|
2019-07-31 19:25:30 +00:00
|
|
|
for attrs in period["Triggers"]:
|
2020-02-28 11:39:29 +00:00
|
|
|
self._attrs[f"{attrs['Name'].lower()}_index"] = attrs["Index"]
|
2019-04-25 03:09:01 +00:00
|
|
|
|
2019-07-31 19:25:30 +00:00
|
|
|
self._state = period["Index"]
|