core/homeassistant/components/trend/binary_sensor.py

225 lines
6.8 KiB
Python
Raw Normal View History

2019-02-19 15:04:56 +00:00
"""A sensor that monitors trends in other components."""
from collections import deque
import logging
import math
import numpy as np
import voluptuous as vol
from homeassistant.components.binary_sensor import (
2019-07-31 19:25:30 +00:00
DEVICE_CLASSES_SCHEMA,
ENTITY_ID_FORMAT,
PLATFORM_SCHEMA,
BinarySensorEntity,
2019-07-31 19:25:30 +00:00
)
from homeassistant.const import (
2019-07-31 19:25:30 +00:00
ATTR_ENTITY_ID,
ATTR_FRIENDLY_NAME,
2021-02-14 10:30:40 +00:00
CONF_ATTRIBUTE,
2019-07-31 19:25:30 +00:00
CONF_DEVICE_CLASS,
CONF_ENTITY_ID,
CONF_FRIENDLY_NAME,
CONF_SENSORS,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
2019-07-31 19:25:30 +00:00
)
2018-01-09 14:30:00 +00:00
from homeassistant.core import callback
import homeassistant.helpers.config_validation as cv
from homeassistant.helpers.entity import generate_entity_id
from homeassistant.helpers.event import async_track_state_change_event
from homeassistant.helpers.reload import setup_reload_service
from homeassistant.util import utcnow
from . import DOMAIN, PLATFORMS
_LOGGER = logging.getLogger(__name__)
2019-07-31 19:25:30 +00:00
ATTR_ATTRIBUTE = "attribute"
ATTR_GRADIENT = "gradient"
ATTR_MIN_GRADIENT = "min_gradient"
ATTR_INVERT = "invert"
ATTR_SAMPLE_DURATION = "sample_duration"
ATTR_SAMPLE_COUNT = "sample_count"
CONF_INVERT = "invert"
CONF_MAX_SAMPLES = "max_samples"
CONF_MIN_GRADIENT = "min_gradient"
CONF_SAMPLE_DURATION = "sample_duration"
SENSOR_SCHEMA = vol.Schema(
{
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_ATTRIBUTE): cv.string,
vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA,
vol.Optional(CONF_FRIENDLY_NAME): cv.string,
vol.Optional(CONF_INVERT, default=False): cv.boolean,
vol.Optional(CONF_MAX_SAMPLES, default=2): cv.positive_int,
vol.Optional(CONF_MIN_GRADIENT, default=0.0): vol.Coerce(float),
vol.Optional(CONF_SAMPLE_DURATION, default=0): cv.positive_int,
}
)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{vol.Required(CONF_SENSORS): cv.schema_with_slug_keys(SENSOR_SCHEMA)}
)
def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the trend sensors."""
setup_reload_service(hass, DOMAIN, PLATFORMS)
sensors = []
for device_id, device_config in config[CONF_SENSORS].items():
entity_id = device_config[ATTR_ENTITY_ID]
attribute = device_config.get(CONF_ATTRIBUTE)
device_class = device_config.get(CONF_DEVICE_CLASS)
friendly_name = device_config.get(ATTR_FRIENDLY_NAME, device_id)
invert = device_config[CONF_INVERT]
max_samples = device_config[CONF_MAX_SAMPLES]
min_gradient = device_config[CONF_MIN_GRADIENT]
sample_duration = device_config[CONF_SAMPLE_DURATION]
sensors.append(
SensorTrend(
2019-07-31 19:25:30 +00:00
hass,
device_id,
friendly_name,
entity_id,
attribute,
device_class,
invert,
max_samples,
min_gradient,
sample_duration,
)
2019-07-31 19:25:30 +00:00
)
if not sensors:
_LOGGER.error("No sensors added")
2018-10-26 08:35:21 +00:00
return
add_entities(sensors)
class SensorTrend(BinarySensorEntity):
"""Representation of a trend Sensor."""
2019-07-31 19:25:30 +00:00
def __init__(
self,
hass,
device_id,
friendly_name,
entity_id,
attribute,
device_class,
invert,
max_samples,
min_gradient,
sample_duration,
):
"""Initialize the sensor."""
self._hass = hass
2019-07-31 19:25:30 +00:00
self.entity_id = generate_entity_id(ENTITY_ID_FORMAT, device_id, hass=hass)
self._name = friendly_name
self._entity_id = entity_id
self._attribute = attribute
self._device_class = device_class
self._invert = invert
self._sample_duration = sample_duration
self._min_gradient = min_gradient
self._gradient = None
self._state = None
self.samples = deque(maxlen=max_samples)
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def is_on(self):
"""Return true if sensor is on."""
return self._state
@property
def device_class(self):
"""Return the sensor class of the sensor."""
return self._device_class
@property
def extra_state_attributes(self):
"""Return the state attributes of the sensor."""
return {
ATTR_ENTITY_ID: self._entity_id,
ATTR_FRIENDLY_NAME: self._name,
ATTR_GRADIENT: self._gradient,
2018-01-09 14:30:00 +00:00
ATTR_INVERT: self._invert,
ATTR_MIN_GRADIENT: self._min_gradient,
ATTR_SAMPLE_COUNT: len(self.samples),
2018-01-09 14:30:00 +00:00
ATTR_SAMPLE_DURATION: self._sample_duration,
}
@property
def should_poll(self):
"""No polling needed."""
return False
async def async_added_to_hass(self):
"""Complete device setup after being added to hass."""
2019-07-31 19:25:30 +00:00
@callback
def trend_sensor_state_listener(event):
"""Handle state changes on the observed device."""
new_state = event.data.get("new_state")
if new_state is None:
return
try:
if self._attribute:
state = new_state.attributes.get(self._attribute)
else:
state = new_state.state
if state not in (STATE_UNKNOWN, STATE_UNAVAILABLE):
sample = (new_state.last_updated.timestamp(), float(state))
self.samples.append(sample)
self.async_schedule_update_ha_state(True)
except (ValueError, TypeError) as ex:
_LOGGER.error(ex)
self.async_on_remove(
async_track_state_change_event(
self.hass, [self._entity_id], trend_sensor_state_listener
)
2019-07-31 19:25:30 +00:00
)
async def async_update(self):
"""Get the latest data and update the states."""
# Remove outdated samples
if self._sample_duration > 0:
cutoff = utcnow().timestamp() - self._sample_duration
while self.samples and self.samples[0][0] < cutoff:
self.samples.popleft()
if len(self.samples) < 2:
return
# Calculate gradient of linear trend
await self.hass.async_add_executor_job(self._calculate_gradient)
# Update state
self._state = (
2019-07-31 19:25:30 +00:00
abs(self._gradient) > abs(self._min_gradient)
and math.copysign(self._gradient, self._min_gradient) == self._gradient
)
if self._invert:
self._state = not self._state
def _calculate_gradient(self):
"""Compute the linear trend gradient of the current samples.
This need run inside executor.
"""
timestamps = np.array([t for t, _ in self.samples])
values = np.array([s for _, s in self.samples])
coeffs = np.polyfit(timestamps, values, 1)
self._gradient = coeffs[0]