core/homeassistant/components/tensorflow/image_processing.py

364 lines
12 KiB
Python
Raw Normal View History

2019-02-19 15:04:56 +00:00
"""Support for performing TensorFlow classification on images."""
import io
import logging
import os
2018-11-16 13:14:40 +00:00
import sys
from PIL import Image, ImageDraw
import numpy as np
import voluptuous as vol
from homeassistant.components.image_processing import (
2019-07-31 19:25:30 +00:00
CONF_CONFIDENCE,
CONF_ENTITY_ID,
CONF_NAME,
CONF_SOURCE,
PLATFORM_SCHEMA,
ImageProcessingEntity,
)
from homeassistant.core import split_entity_id
from homeassistant.helpers import template
import homeassistant.helpers.config_validation as cv
from homeassistant.util.pil import draw_box
_LOGGER = logging.getLogger(__name__)
2019-07-31 19:25:30 +00:00
ATTR_MATCHES = "matches"
ATTR_SUMMARY = "summary"
ATTR_TOTAL_MATCHES = "total_matches"
CONF_AREA = "area"
CONF_BOTTOM = "bottom"
CONF_CATEGORIES = "categories"
CONF_CATEGORY = "category"
CONF_FILE_OUT = "file_out"
CONF_GRAPH = "graph"
CONF_LABELS = "labels"
CONF_LEFT = "left"
CONF_MODEL = "model"
CONF_MODEL_DIR = "model_dir"
CONF_RIGHT = "right"
CONF_TOP = "top"
AREA_SCHEMA = vol.Schema(
{
vol.Optional(CONF_BOTTOM, default=1): cv.small_float,
vol.Optional(CONF_LEFT, default=0): cv.small_float,
vol.Optional(CONF_RIGHT, default=1): cv.small_float,
vol.Optional(CONF_TOP, default=0): cv.small_float,
}
)
CATEGORY_SCHEMA = vol.Schema(
{vol.Required(CONF_CATEGORY): cv.string, vol.Optional(CONF_AREA): AREA_SCHEMA}
)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{
vol.Optional(CONF_FILE_OUT, default=[]): vol.All(cv.ensure_list, [cv.template]),
vol.Required(CONF_MODEL): vol.Schema(
{
vol.Required(CONF_GRAPH): cv.isfile,
vol.Optional(CONF_AREA): AREA_SCHEMA,
vol.Optional(CONF_CATEGORIES, default=[]): vol.All(
cv.ensure_list, [vol.Any(cv.string, CATEGORY_SCHEMA)]
),
vol.Optional(CONF_LABELS): cv.isfile,
vol.Optional(CONF_MODEL_DIR): cv.isdir,
}
),
}
)
def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the TensorFlow image processing platform."""
model_config = config.get(CONF_MODEL)
2019-07-31 19:25:30 +00:00
model_dir = model_config.get(CONF_MODEL_DIR) or hass.config.path("tensorflow")
labels = model_config.get(CONF_LABELS) or hass.config.path(
"tensorflow", "object_detection", "data", "mscoco_label_map.pbtxt"
)
# Make sure locations exist
if not os.path.isdir(model_dir) or not os.path.exists(labels):
2018-11-16 13:14:40 +00:00
_LOGGER.error("Unable to locate tensorflow models or label map")
return
# append custom model path to sys.path
sys.path.append(model_dir)
try:
# Verify that the TensorFlow Object Detection API is pre-installed
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
# These imports shouldn't be moved to the top, because they depend on code from the model_dir.
# (The model_dir is created during the manual setup process. See integration docs.)
import tensorflow as tf
from object_detection.utils import label_map_util
except ImportError:
_LOGGER.error(
"No TensorFlow Object Detection library found! Install or compile "
"for your system following instructions here: "
2019-07-31 19:25:30 +00:00
"https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md"
)
return
try:
# Display warning that PIL will be used if no OpenCV is found.
import cv2 # noqa: F401 pylint: disable=unused-import
except ImportError:
2018-11-16 13:14:40 +00:00
_LOGGER.warning(
"No OpenCV library found. TensorFlow will process image with "
2019-07-31 19:25:30 +00:00
"PIL at reduced resolution"
)
2019-02-28 12:16:21 +00:00
# Set up Tensorflow graph, session, and label map to pass to processor
# pylint: disable=no-member
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
2019-07-31 19:25:30 +00:00
with tf.gfile.GFile(model_config.get(CONF_GRAPH), "rb") as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
2019-07-31 19:25:30 +00:00
tf.import_graph_def(od_graph_def, name="")
session = tf.Session(graph=detection_graph)
label_map = label_map_util.load_labelmap(labels)
categories = label_map_util.convert_label_map_to_categories(
2019-07-31 19:25:30 +00:00
label_map, max_num_classes=90, use_display_name=True
)
category_index = label_map_util.create_category_index(categories)
entities = []
for camera in config[CONF_SOURCE]:
2019-07-31 19:25:30 +00:00
entities.append(
TensorFlowImageProcessor(
hass,
camera[CONF_ENTITY_ID],
camera.get(CONF_NAME),
session,
detection_graph,
category_index,
config,
)
)
add_entities(entities)
class TensorFlowImageProcessor(ImageProcessingEntity):
"""Representation of an TensorFlow image processor."""
2019-07-31 19:25:30 +00:00
def __init__(
self,
hass,
camera_entity,
name,
session,
detection_graph,
category_index,
config,
):
"""Initialize the TensorFlow entity."""
model_config = config.get(CONF_MODEL)
self.hass = hass
self._camera_entity = camera_entity
if name:
self._name = name
else:
2019-07-31 19:25:30 +00:00
self._name = "TensorFlow {0}".format(split_entity_id(camera_entity)[1])
self._session = session
self._graph = detection_graph
self._category_index = category_index
self._min_confidence = config.get(CONF_CONFIDENCE)
self._file_out = config.get(CONF_FILE_OUT)
# handle categories and specific detection areas
categories = model_config.get(CONF_CATEGORIES)
self._include_categories = []
self._category_areas = {}
for category in categories:
if isinstance(category, dict):
category_name = category.get(CONF_CATEGORY)
category_area = category.get(CONF_AREA)
self._include_categories.append(category_name)
self._category_areas[category_name] = [0, 0, 1, 1]
if category_area:
self._category_areas[category_name] = [
category_area.get(CONF_TOP),
category_area.get(CONF_LEFT),
category_area.get(CONF_BOTTOM),
2019-07-31 19:25:30 +00:00
category_area.get(CONF_RIGHT),
]
else:
self._include_categories.append(category)
self._category_areas[category] = [0, 0, 1, 1]
# Handle global detection area
self._area = [0, 0, 1, 1]
area_config = model_config.get(CONF_AREA)
if area_config:
self._area = [
area_config.get(CONF_TOP),
area_config.get(CONF_LEFT),
area_config.get(CONF_BOTTOM),
2019-07-31 19:25:30 +00:00
area_config.get(CONF_RIGHT),
]
template.attach(hass, self._file_out)
self._matches = {}
self._total_matches = 0
self._last_image = None
@property
def camera_entity(self):
"""Return camera entity id from process pictures."""
return self._camera_entity
@property
def name(self):
"""Return the name of the image processor."""
return self._name
@property
def state(self):
"""Return the state of the entity."""
return self._total_matches
@property
def device_state_attributes(self):
"""Return device specific state attributes."""
return {
ATTR_MATCHES: self._matches,
2019-07-31 19:25:30 +00:00
ATTR_SUMMARY: {
category: len(values) for category, values in self._matches.items()
},
ATTR_TOTAL_MATCHES: self._total_matches,
}
def _save_image(self, image, matches, paths):
2019-07-31 19:25:30 +00:00
img = Image.open(io.BytesIO(bytearray(image))).convert("RGB")
img_width, img_height = img.size
draw = ImageDraw.Draw(img)
# Draw custom global region/area
if self._area != [0, 0, 1, 1]:
2019-07-31 19:25:30 +00:00
draw_box(
draw, self._area, img_width, img_height, "Detection Area", (0, 255, 255)
)
for category, values in matches.items():
# Draw custom category regions/areas
2019-07-31 19:25:30 +00:00
if category in self._category_areas and self._category_areas[category] != [
0,
0,
1,
1,
]:
label = "{} Detection Area".format(category.capitalize())
2018-11-16 13:14:40 +00:00
draw_box(
2019-07-31 19:25:30 +00:00
draw,
self._category_areas[category],
img_width,
img_height,
label,
(0, 255, 0),
)
# Draw detected objects
for instance in values:
2019-07-31 19:25:30 +00:00
label = "{0} {1:.1f}%".format(category, instance["score"])
2018-11-16 13:14:40 +00:00
draw_box(
2019-07-31 19:25:30 +00:00
draw, instance["box"], img_width, img_height, label, (255, 255, 0)
)
for path in paths:
_LOGGER.info("Saving results image to %s", path)
img.save(path)
def process_image(self, image):
"""Process the image."""
2019-07-31 19:25:30 +00:00
try:
import cv2 # pylint: disable=import-error
img = cv2.imdecode(np.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED)
inp = img[:, :, [2, 1, 0]] # BGR->RGB
inp_expanded = inp.reshape(1, inp.shape[0], inp.shape[1], 3)
except ImportError:
2019-07-31 19:25:30 +00:00
img = Image.open(io.BytesIO(bytearray(image))).convert("RGB")
img.thumbnail((460, 460), Image.ANTIALIAS)
img_width, img_height = img.size
2019-07-31 19:25:30 +00:00
inp = (
np.array(img.getdata())
.reshape((img_height, img_width, 3))
.astype(np.uint8)
)
inp_expanded = np.expand_dims(inp, axis=0)
2019-07-31 19:25:30 +00:00
image_tensor = self._graph.get_tensor_by_name("image_tensor:0")
boxes = self._graph.get_tensor_by_name("detection_boxes:0")
scores = self._graph.get_tensor_by_name("detection_scores:0")
classes = self._graph.get_tensor_by_name("detection_classes:0")
boxes, scores, classes = self._session.run(
2019-07-31 19:25:30 +00:00
[boxes, scores, classes], feed_dict={image_tensor: inp_expanded}
)
boxes, scores, classes = map(np.squeeze, [boxes, scores, classes])
classes = classes.astype(int)
matches = {}
total_matches = 0
for box, score, obj_class in zip(boxes, scores, classes):
score = score * 100
boxes = box.tolist()
# Exclude matches below min confidence value
if score < self._min_confidence:
continue
# Exclude matches outside global area definition
2019-07-31 19:25:30 +00:00
if (
boxes[0] < self._area[0]
or boxes[1] < self._area[1]
or boxes[2] > self._area[2]
or boxes[3] > self._area[3]
):
continue
2019-07-31 19:25:30 +00:00
category = self._category_index[obj_class]["name"]
# Exclude unlisted categories
2019-07-31 19:25:30 +00:00
if self._include_categories and category not in self._include_categories:
continue
# Exclude matches outside category specific area definition
2019-07-31 19:25:30 +00:00
if self._category_areas and (
boxes[0] < self._category_areas[category][0]
or boxes[1] < self._category_areas[category][1]
or boxes[2] > self._category_areas[category][2]
or boxes[3] > self._category_areas[category][3]
):
continue
# If we got here, we should include it
if category not in matches.keys():
matches[category] = []
2019-07-31 19:25:30 +00:00
matches[category].append({"score": float(score), "box": boxes})
total_matches += 1
# Save Images
if total_matches and self._file_out:
paths = []
for path_template in self._file_out:
if isinstance(path_template, template.Template):
2019-07-31 19:25:30 +00:00
paths.append(
path_template.render(camera_entity=self._camera_entity)
)
else:
paths.append(path_template)
self._save_image(image, matches, paths)
self._matches = matches
self._total_matches = total_matches