mirror of https://github.com/mirror/busybox.git
1499 lines
38 KiB
C
1499 lines
38 KiB
C
/*
|
|
* Copyright (C) 2021 Denys Vlasenko
|
|
*
|
|
* Licensed under GPLv2, see file LICENSE in this source tree.
|
|
*/
|
|
#include "tls.h"
|
|
|
|
#define SP_DEBUG 0
|
|
#define FIXED_SECRET 0
|
|
#define FIXED_PEER_PUBKEY 0
|
|
|
|
#define ALLOW_ASM 1
|
|
|
|
#if SP_DEBUG
|
|
# define dbg(...) fprintf(stderr, __VA_ARGS__)
|
|
static void dump_hex(const char *fmt, const void *vp, int len)
|
|
{
|
|
char hexbuf[32 * 1024 + 4];
|
|
const uint8_t *p = vp;
|
|
|
|
bin2hex(hexbuf, (void*)p, len)[0] = '\0';
|
|
dbg(fmt, hexbuf);
|
|
}
|
|
#else
|
|
# define dbg(...) ((void)0)
|
|
# define dump_hex(...) ((void)0)
|
|
#endif
|
|
|
|
typedef uint32_t sp_digit;
|
|
typedef int32_t signed_sp_digit;
|
|
|
|
/* 64-bit optimizations:
|
|
* if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff,
|
|
* then loads and stores can be done in 64-bit chunks.
|
|
*
|
|
* A narrower case is when arch is also little-endian (such as x86_64),
|
|
* then "LSW first", uint32[8] and uint64[4] representations are equivalent,
|
|
* and arithmetic can be done in 64 bits too.
|
|
*/
|
|
#if defined(__GNUC__) && defined(__x86_64__)
|
|
# define UNALIGNED_LE_64BIT 1
|
|
#else
|
|
# define UNALIGNED_LE_64BIT 0
|
|
#endif
|
|
|
|
/* The code below is taken from parts of
|
|
* wolfssl-3.15.3/wolfcrypt/src/sp_c32.c
|
|
* and heavily modified.
|
|
*/
|
|
|
|
typedef struct sp_point {
|
|
sp_digit x[8]
|
|
#if ULONG_MAX > 0xffffffff
|
|
/* Make sp_point[] arrays to not be 64-bit misaligned */
|
|
ALIGNED(8)
|
|
#endif
|
|
;
|
|
sp_digit y[8];
|
|
sp_digit z[8];
|
|
int infinity;
|
|
} sp_point;
|
|
|
|
/* The modulus (prime) of the curve P256. */
|
|
static const sp_digit p256_mod[8] ALIGNED(8) = {
|
|
0xffffffff,0xffffffff,0xffffffff,0x00000000,
|
|
0x00000000,0x00000000,0x00000001,0xffffffff,
|
|
};
|
|
|
|
#define p256_mp_mod ((sp_digit)0x000001)
|
|
|
|
/* Write r as big endian to byte array.
|
|
* Fixed length number of bytes written: 32
|
|
*
|
|
* r A single precision integer.
|
|
* a Byte array.
|
|
*/
|
|
#if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff
|
|
static void sp_256_to_bin_8(const sp_digit* rr, uint8_t* a)
|
|
{
|
|
int i;
|
|
const uint64_t* r = (void*)rr;
|
|
|
|
r += 4;
|
|
for (i = 0; i < 4; i++) {
|
|
r--;
|
|
move_to_unaligned64(a, SWAP_BE64(*r));
|
|
a += 8;
|
|
}
|
|
}
|
|
#else
|
|
static void sp_256_to_bin_8(const sp_digit* r, uint8_t* a)
|
|
{
|
|
int i;
|
|
|
|
r += 8;
|
|
for (i = 0; i < 8; i++) {
|
|
r--;
|
|
move_to_unaligned32(a, SWAP_BE32(*r));
|
|
a += 4;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Read big endian unsigned byte array into r.
|
|
*
|
|
* r A single precision integer.
|
|
* a Byte array.
|
|
* n Number of bytes in array to read.
|
|
*/
|
|
#if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff
|
|
static void sp_256_from_bin_8(sp_digit* rr, const uint8_t* a)
|
|
{
|
|
int i;
|
|
uint64_t* r = (void*)rr;
|
|
|
|
r += 4;
|
|
for (i = 0; i < 4; i++) {
|
|
uint64_t v;
|
|
move_from_unaligned64(v, a);
|
|
*--r = SWAP_BE64(v);
|
|
a += 8;
|
|
}
|
|
}
|
|
#else
|
|
static void sp_256_from_bin_8(sp_digit* r, const uint8_t* a)
|
|
{
|
|
int i;
|
|
|
|
r += 8;
|
|
for (i = 0; i < 8; i++) {
|
|
sp_digit v;
|
|
move_from_unaligned32(v, a);
|
|
*--r = SWAP_BE32(v);
|
|
a += 4;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if SP_DEBUG
|
|
static void dump_256(const char *fmt, const sp_digit* r)
|
|
{
|
|
uint8_t b32[32];
|
|
sp_256_to_bin_8(r, b32);
|
|
dump_hex(fmt, b32, 32);
|
|
}
|
|
static void dump_512(const char *fmt, const sp_digit* r)
|
|
{
|
|
uint8_t b64[64];
|
|
sp_256_to_bin_8(r, b64 + 32);
|
|
sp_256_to_bin_8(r+8, b64);
|
|
dump_hex(fmt, b64, 64);
|
|
}
|
|
#else
|
|
# define dump_256(...) ((void)0)
|
|
# define dump_512(...) ((void)0)
|
|
#endif
|
|
|
|
/* Convert a point of big-endian 32-byte x,y pair to type sp_point. */
|
|
static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
|
|
{
|
|
memset(p, 0, sizeof(*p));
|
|
/*p->infinity = 0;*/
|
|
sp_256_from_bin_8(p->x, bin2x32);
|
|
sp_256_from_bin_8(p->y, bin2x32 + 32);
|
|
p->z[0] = 1; /* p->z = 1 */
|
|
}
|
|
|
|
/* Compare a with b.
|
|
*
|
|
* return -ve, 0 or +ve if a is less than, equal to or greater than b
|
|
* respectively.
|
|
*/
|
|
#if UNALIGNED_LE_64BIT
|
|
static signed_sp_digit sp_256_cmp_8(const sp_digit* aa, const sp_digit* bb)
|
|
{
|
|
const uint64_t* a = (void*)aa;
|
|
const uint64_t* b = (void*)bb;
|
|
int i;
|
|
for (i = 3; i >= 0; i--) {
|
|
if (a[i] == b[i])
|
|
continue;
|
|
return (a[i] > b[i]) * 2 - 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static signed_sp_digit sp_256_cmp_8(const sp_digit* a, const sp_digit* b)
|
|
{
|
|
int i;
|
|
for (i = 7; i >= 0; i--) {
|
|
/* signed_sp_digit r = a[i] - b[i];
|
|
* if (r != 0)
|
|
* return r;
|
|
* does not work: think about a[i]=0, b[i]=0xffffffff
|
|
*/
|
|
if (a[i] == b[i])
|
|
continue;
|
|
return (a[i] > b[i]) * 2 - 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Compare two numbers to determine if they are equal.
|
|
*
|
|
* return 1 when equal and 0 otherwise.
|
|
*/
|
|
static int sp_256_cmp_equal_8(const sp_digit* a, const sp_digit* b)
|
|
{
|
|
return sp_256_cmp_8(a, b) == 0;
|
|
}
|
|
|
|
/* Add b to a into r. (r = a + b). Return !0 on overflow */
|
|
static int sp_256_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
|
|
{
|
|
#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
|
|
sp_digit reg;
|
|
asm volatile (
|
|
"\n movl (%0), %3"
|
|
"\n addl (%1), %3"
|
|
"\n movl %3, (%2)"
|
|
"\n"
|
|
"\n movl 1*4(%0), %3"
|
|
"\n adcl 1*4(%1), %3"
|
|
"\n movl %3, 1*4(%2)"
|
|
"\n"
|
|
"\n movl 2*4(%0), %3"
|
|
"\n adcl 2*4(%1), %3"
|
|
"\n movl %3, 2*4(%2)"
|
|
"\n"
|
|
"\n movl 3*4(%0), %3"
|
|
"\n adcl 3*4(%1), %3"
|
|
"\n movl %3, 3*4(%2)"
|
|
"\n"
|
|
"\n movl 4*4(%0), %3"
|
|
"\n adcl 4*4(%1), %3"
|
|
"\n movl %3, 4*4(%2)"
|
|
"\n"
|
|
"\n movl 5*4(%0), %3"
|
|
"\n adcl 5*4(%1), %3"
|
|
"\n movl %3, 5*4(%2)"
|
|
"\n"
|
|
"\n movl 6*4(%0), %3"
|
|
"\n adcl 6*4(%1), %3"
|
|
"\n movl %3, 6*4(%2)"
|
|
"\n"
|
|
"\n movl 7*4(%0), %3"
|
|
"\n adcl 7*4(%1), %3"
|
|
"\n movl %3, 7*4(%2)"
|
|
"\n"
|
|
"\n sbbl %3, %3"
|
|
"\n"
|
|
: "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
|
|
: "0" (a), "1" (b), "2" (r)
|
|
: "memory"
|
|
);
|
|
return reg;
|
|
#elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
|
|
uint64_t reg;
|
|
asm volatile (
|
|
"\n movq (%0), %3"
|
|
"\n addq (%1), %3"
|
|
"\n movq %3, (%2)"
|
|
"\n"
|
|
"\n movq 1*8(%0), %3"
|
|
"\n adcq 1*8(%1), %3"
|
|
"\n movq %3, 1*8(%2)"
|
|
"\n"
|
|
"\n movq 2*8(%0), %3"
|
|
"\n adcq 2*8(%1), %3"
|
|
"\n movq %3, 2*8(%2)"
|
|
"\n"
|
|
"\n movq 3*8(%0), %3"
|
|
"\n adcq 3*8(%1), %3"
|
|
"\n movq %3, 3*8(%2)"
|
|
"\n"
|
|
"\n sbbq %3, %3"
|
|
"\n"
|
|
: "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
|
|
: "0" (a), "1" (b), "2" (r)
|
|
: "memory"
|
|
);
|
|
return reg;
|
|
#else
|
|
int i;
|
|
sp_digit carry;
|
|
|
|
carry = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
sp_digit w, v;
|
|
w = b[i] + carry;
|
|
v = a[i];
|
|
if (w != 0) {
|
|
v = a[i] + w;
|
|
carry = (v < a[i]);
|
|
/* hope compiler detects above as "carry flag set" */
|
|
}
|
|
/* else: b + carry == 0, two cases:
|
|
* b:ffffffff, carry:1
|
|
* b:00000000, carry:0
|
|
* in either case, r[i] = a[i] and carry remains unchanged
|
|
*/
|
|
r[i] = v;
|
|
}
|
|
return carry;
|
|
#endif
|
|
}
|
|
|
|
/* Sub b from a into r. (r = a - b). Return !0 on underflow */
|
|
static int sp_256_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
|
|
{
|
|
#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
|
|
sp_digit reg;
|
|
asm volatile (
|
|
"\n movl (%0), %3"
|
|
"\n subl (%1), %3"
|
|
"\n movl %3, (%2)"
|
|
"\n"
|
|
"\n movl 1*4(%0), %3"
|
|
"\n sbbl 1*4(%1), %3"
|
|
"\n movl %3, 1*4(%2)"
|
|
"\n"
|
|
"\n movl 2*4(%0), %3"
|
|
"\n sbbl 2*4(%1), %3"
|
|
"\n movl %3, 2*4(%2)"
|
|
"\n"
|
|
"\n movl 3*4(%0), %3"
|
|
"\n sbbl 3*4(%1), %3"
|
|
"\n movl %3, 3*4(%2)"
|
|
"\n"
|
|
"\n movl 4*4(%0), %3"
|
|
"\n sbbl 4*4(%1), %3"
|
|
"\n movl %3, 4*4(%2)"
|
|
"\n"
|
|
"\n movl 5*4(%0), %3"
|
|
"\n sbbl 5*4(%1), %3"
|
|
"\n movl %3, 5*4(%2)"
|
|
"\n"
|
|
"\n movl 6*4(%0), %3"
|
|
"\n sbbl 6*4(%1), %3"
|
|
"\n movl %3, 6*4(%2)"
|
|
"\n"
|
|
"\n movl 7*4(%0), %3"
|
|
"\n sbbl 7*4(%1), %3"
|
|
"\n movl %3, 7*4(%2)"
|
|
"\n"
|
|
"\n sbbl %3, %3"
|
|
"\n"
|
|
: "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
|
|
: "0" (a), "1" (b), "2" (r)
|
|
: "memory"
|
|
);
|
|
return reg;
|
|
#elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
|
|
uint64_t reg;
|
|
asm volatile (
|
|
"\n movq (%0), %3"
|
|
"\n subq (%1), %3"
|
|
"\n movq %3, (%2)"
|
|
"\n"
|
|
"\n movq 1*8(%0), %3"
|
|
"\n sbbq 1*8(%1), %3"
|
|
"\n movq %3, 1*8(%2)"
|
|
"\n"
|
|
"\n movq 2*8(%0), %3"
|
|
"\n sbbq 2*8(%1), %3"
|
|
"\n movq %3, 2*8(%2)"
|
|
"\n"
|
|
"\n movq 3*8(%0), %3"
|
|
"\n sbbq 3*8(%1), %3"
|
|
"\n movq %3, 3*8(%2)"
|
|
"\n"
|
|
"\n sbbq %3, %3"
|
|
"\n"
|
|
: "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
|
|
: "0" (a), "1" (b), "2" (r)
|
|
: "memory"
|
|
);
|
|
return reg;
|
|
#else
|
|
int i;
|
|
sp_digit borrow;
|
|
|
|
borrow = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
sp_digit w, v;
|
|
w = b[i] + borrow;
|
|
v = a[i];
|
|
if (w != 0) {
|
|
v = a[i] - w;
|
|
borrow = (v > a[i]);
|
|
/* hope compiler detects above as "carry flag set" */
|
|
}
|
|
/* else: b + borrow == 0, two cases:
|
|
* b:ffffffff, borrow:1
|
|
* b:00000000, borrow:0
|
|
* in either case, r[i] = a[i] and borrow remains unchanged
|
|
*/
|
|
r[i] = v;
|
|
}
|
|
return borrow;
|
|
#endif
|
|
}
|
|
|
|
/* Sub p256_mod from r. (r = r - p256_mod). */
|
|
#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
|
|
static void sp_256_sub_8_p256_mod(sp_digit* r)
|
|
{
|
|
//p256_mod[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
|
|
asm volatile (
|
|
"\n subl $0xffffffff, (%0)"
|
|
"\n sbbl $0xffffffff, 1*4(%0)"
|
|
"\n sbbl $0xffffffff, 2*4(%0)"
|
|
"\n sbbl $0, 3*4(%0)"
|
|
"\n sbbl $0, 4*4(%0)"
|
|
"\n sbbl $0, 5*4(%0)"
|
|
"\n sbbl $1, 6*4(%0)"
|
|
"\n sbbl $0xffffffff, 7*4(%0)"
|
|
"\n"
|
|
: "=r" (r)
|
|
: "0" (r)
|
|
: "memory"
|
|
);
|
|
}
|
|
#elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
|
|
static void sp_256_sub_8_p256_mod(sp_digit* r)
|
|
{
|
|
uint64_t reg;
|
|
uint64_t ooff;
|
|
//p256_mod[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff
|
|
asm volatile (
|
|
"\n addq $1, (%0)" // adding 1 is the same as subtracting ffffffffffffffff
|
|
"\n cmc" // only carry bit needs inverting
|
|
"\n"
|
|
"\n sbbq %1, 1*8(%0)" // %1 holds 00000000ffffffff
|
|
"\n"
|
|
"\n sbbq $0, 2*8(%0)"
|
|
"\n"
|
|
"\n movq 3*8(%0), %2"
|
|
"\n sbbq $0, %2" // adding 00000000ffffffff (in %1)
|
|
"\n addq %1, %2" // is the same as subtracting ffffffff00000001
|
|
"\n movq %2, 3*8(%0)"
|
|
"\n"
|
|
: "=r" (r), "=r" (ooff), "=r" (reg)
|
|
: "0" (r), "1" (0x00000000ffffffff)
|
|
: "memory"
|
|
);
|
|
}
|
|
#else
|
|
static void sp_256_sub_8_p256_mod(sp_digit* r)
|
|
{
|
|
sp_256_sub_8(r, r, p256_mod);
|
|
}
|
|
#endif
|
|
|
|
/* Multiply a and b into r. (r = a * b)
|
|
* r should be [16] array (512 bits), and must not coincide with a or b.
|
|
*/
|
|
static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
|
|
{
|
|
#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
|
|
int k;
|
|
uint32_t accl;
|
|
uint32_t acch;
|
|
|
|
acch = accl = 0;
|
|
for (k = 0; k < 15; k++) {
|
|
int i, j;
|
|
uint32_t acc_hi;
|
|
i = k - 7;
|
|
if (i < 0)
|
|
i = 0;
|
|
j = k - i;
|
|
acc_hi = 0;
|
|
do {
|
|
////////////////////////
|
|
// uint64_t m = ((uint64_t)a[i]) * b[j];
|
|
// acc_hi:acch:accl += m;
|
|
asm volatile (
|
|
// a[i] is already loaded in %%eax
|
|
"\n mull %7"
|
|
"\n addl %%eax, %0"
|
|
"\n adcl %%edx, %1"
|
|
"\n adcl $0, %2"
|
|
: "=rm" (accl), "=rm" (acch), "=rm" (acc_hi)
|
|
: "0" (accl), "1" (acch), "2" (acc_hi), "a" (a[i]), "m" (b[j])
|
|
: "cc", "dx"
|
|
);
|
|
////////////////////////
|
|
j--;
|
|
i++;
|
|
} while (i != 8 && i <= k);
|
|
r[k] = accl;
|
|
accl = acch;
|
|
acch = acc_hi;
|
|
}
|
|
r[15] = accl;
|
|
#elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
|
|
const uint64_t* aa = (const void*)a;
|
|
const uint64_t* bb = (const void*)b;
|
|
uint64_t* rr = (void*)r;
|
|
int k;
|
|
uint64_t accl;
|
|
uint64_t acch;
|
|
|
|
acch = accl = 0;
|
|
for (k = 0; k < 7; k++) {
|
|
int i, j;
|
|
uint64_t acc_hi;
|
|
i = k - 3;
|
|
if (i < 0)
|
|
i = 0;
|
|
j = k - i;
|
|
acc_hi = 0;
|
|
do {
|
|
////////////////////////
|
|
// uint128_t m = ((uint128_t)a[i]) * b[j];
|
|
// acc_hi:acch:accl += m;
|
|
asm volatile (
|
|
// aa[i] is already loaded in %%rax
|
|
"\n mulq %7"
|
|
"\n addq %%rax, %0"
|
|
"\n adcq %%rdx, %1"
|
|
"\n adcq $0, %2"
|
|
: "=rm" (accl), "=rm" (acch), "=rm" (acc_hi)
|
|
: "0" (accl), "1" (acch), "2" (acc_hi), "a" (aa[i]), "m" (bb[j])
|
|
: "cc", "dx"
|
|
);
|
|
////////////////////////
|
|
j--;
|
|
i++;
|
|
} while (i != 4 && i <= k);
|
|
rr[k] = accl;
|
|
accl = acch;
|
|
acch = acc_hi;
|
|
}
|
|
rr[7] = accl;
|
|
#elif 0
|
|
//TODO: arm assembly (untested)
|
|
asm volatile (
|
|
"\n mov r5, #0"
|
|
"\n mov r6, #0"
|
|
"\n mov r7, #0"
|
|
"\n mov r8, #0"
|
|
"\n 1:"
|
|
"\n subs r3, r5, #28"
|
|
"\n movcc r3, #0"
|
|
"\n sub r4, r5, r3"
|
|
"\n 2:"
|
|
"\n ldr r14, [%[a], r3]"
|
|
"\n ldr r12, [%[b], r4]"
|
|
"\n umull r9, r10, r14, r12"
|
|
"\n adds r6, r6, r9"
|
|
"\n adcs r7, r7, r10"
|
|
"\n adc r8, r8, #0"
|
|
"\n add r3, r3, #4"
|
|
"\n sub r4, r4, #4"
|
|
"\n cmp r3, #32"
|
|
"\n beq 3f"
|
|
"\n cmp r3, r5"
|
|
"\n ble 2b"
|
|
"\n 3:"
|
|
"\n str r6, [%[r], r5]"
|
|
"\n mov r6, r7"
|
|
"\n mov r7, r8"
|
|
"\n mov r8, #0"
|
|
"\n add r5, r5, #4"
|
|
"\n cmp r5, #56"
|
|
"\n ble 1b"
|
|
"\n str r6, [%[r], r5]"
|
|
: [r] "r" (r), [a] "r" (a), [b] "r" (b)
|
|
: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r12", "r14"
|
|
);
|
|
#else
|
|
int i, j, k;
|
|
uint64_t acc;
|
|
|
|
acc = 0;
|
|
for (k = 0; k < 15; k++) {
|
|
uint32_t acc_hi;
|
|
i = k - 7;
|
|
if (i < 0)
|
|
i = 0;
|
|
j = k - i;
|
|
acc_hi = 0;
|
|
do {
|
|
uint64_t m = ((uint64_t)a[i]) * b[j];
|
|
acc += m;
|
|
if (acc < m)
|
|
acc_hi++;
|
|
j--;
|
|
i++;
|
|
} while (i != 8 && i <= k);
|
|
r[k] = acc;
|
|
acc = (acc >> 32) | ((uint64_t)acc_hi << 32);
|
|
}
|
|
r[15] = acc;
|
|
#endif
|
|
}
|
|
|
|
/* Shift number right one bit. Bottom bit is lost. */
|
|
#if UNALIGNED_LE_64BIT
|
|
static void sp_256_rshift1_8(sp_digit* rr, uint64_t carry)
|
|
{
|
|
uint64_t *r = (void*)rr;
|
|
int i;
|
|
|
|
carry = (((uint64_t)!!carry) << 63);
|
|
for (i = 3; i >= 0; i--) {
|
|
uint64_t c = r[i] << 63;
|
|
r[i] = (r[i] >> 1) | carry;
|
|
carry = c;
|
|
}
|
|
}
|
|
#else
|
|
static void sp_256_rshift1_8(sp_digit* r, sp_digit carry)
|
|
{
|
|
int i;
|
|
|
|
carry = (((sp_digit)!!carry) << 31);
|
|
for (i = 7; i >= 0; i--) {
|
|
sp_digit c = r[i] << 31;
|
|
r[i] = (r[i] >> 1) | carry;
|
|
carry = c;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Divide the number by 2 mod the modulus (prime). (r = (r / 2) % m) */
|
|
static void sp_256_div2_8(sp_digit* r /*, const sp_digit* m*/)
|
|
{
|
|
const sp_digit* m = p256_mod;
|
|
|
|
int carry = 0;
|
|
if (r[0] & 1)
|
|
carry = sp_256_add_8(r, r, m);
|
|
sp_256_rshift1_8(r, carry);
|
|
}
|
|
|
|
/* Add two Montgomery form numbers (r = a + b % m) */
|
|
static void sp_256_mont_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b
|
|
/*, const sp_digit* m*/)
|
|
{
|
|
// const sp_digit* m = p256_mod;
|
|
|
|
int carry = sp_256_add_8(r, a, b);
|
|
if (carry) {
|
|
sp_256_sub_8_p256_mod(r);
|
|
}
|
|
}
|
|
|
|
/* Subtract two Montgomery form numbers (r = a - b % m) */
|
|
static void sp_256_mont_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b
|
|
/*, const sp_digit* m*/)
|
|
{
|
|
const sp_digit* m = p256_mod;
|
|
|
|
int borrow;
|
|
borrow = sp_256_sub_8(r, a, b);
|
|
if (borrow) {
|
|
sp_256_add_8(r, r, m);
|
|
}
|
|
}
|
|
|
|
/* Double a Montgomery form number (r = a + a % m) */
|
|
static void sp_256_mont_dbl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m*/)
|
|
{
|
|
// const sp_digit* m = p256_mod;
|
|
|
|
int carry = sp_256_add_8(r, a, a);
|
|
if (carry)
|
|
sp_256_sub_8_p256_mod(r);
|
|
}
|
|
|
|
/* Triple a Montgomery form number (r = a + a + a % m) */
|
|
static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m*/)
|
|
{
|
|
// const sp_digit* m = p256_mod;
|
|
|
|
int carry = sp_256_add_8(r, a, a);
|
|
if (carry) {
|
|
sp_256_sub_8_p256_mod(r);
|
|
}
|
|
carry = sp_256_add_8(r, r, a);
|
|
if (carry) {
|
|
sp_256_sub_8_p256_mod(r);
|
|
}
|
|
}
|
|
|
|
/* Shift the result in the high 256 bits down to the bottom. */
|
|
static void sp_512to256_mont_shift_8(sp_digit* r, sp_digit* a)
|
|
{
|
|
memcpy(r, a + 8, sizeof(*r) * 8);
|
|
}
|
|
|
|
#if UNALIGNED_LE_64BIT
|
|
/* 64-bit little-endian optimized version.
|
|
* See generic 32-bit version below for explanation.
|
|
* The benefit of this version is: even though r[3] calculation is atrocious,
|
|
* we call sp_256_mul_add_4() four times, not 8.
|
|
* Measured run time improvement of curve_P256_compute_pubkey_and_premaster()
|
|
* call on x86-64: from ~1500us to ~900us. Code size +32 bytes.
|
|
*/
|
|
static int sp_256_mul_add_4(uint64_t *r /*, const uint64_t* a, uint64_t b*/)
|
|
{
|
|
uint64_t b = r[0];
|
|
|
|
# if 0
|
|
const uint64_t* a = (const void*)p256_mod;
|
|
//a[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff
|
|
uint128_t t;
|
|
int i;
|
|
t = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
uint32_t t_hi;
|
|
uint128_t m = ((uint128_t)b * a[i]) + r[i];
|
|
t += m;
|
|
t_hi = (t < m);
|
|
r[i] = (uint64_t)t;
|
|
t = (t >> 64) | ((uint128_t)t_hi << 64);
|
|
}
|
|
r[4] += (uint64_t)t;
|
|
return (r[4] < (uint64_t)t); /* 1 if addition overflowed */
|
|
# else
|
|
// Unroll, then optimize the above loop:
|
|
//uint32_t t_hi;
|
|
//uint128_t m;
|
|
uint64_t t64, t64u;
|
|
|
|
//m = ((uint128_t)b * a[0]) + r[0];
|
|
// Since b is r[0] and a[0] is ffffffffffffffff, the above optimizes to:
|
|
// m = r[0] * ffffffffffffffff + r[0] = (r[0] << 64 - r[0]) + r[0] = r[0] << 64;
|
|
//t += m;
|
|
// t = r[0] << 64 = b << 64;
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[0] = (uint64_t)t;
|
|
// r[0] = 0;
|
|
//the store can be eliminated since caller won't look at lower 256 bits of the result
|
|
//t = (t >> 64) | ((uint128_t)t_hi << 64);
|
|
// t = b;
|
|
|
|
//m = ((uint128_t)b * a[1]) + r[1];
|
|
// Since a[1] is 00000000ffffffff, the above optimizes to:
|
|
// m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1];
|
|
//t += m;
|
|
// t = b + (b << 32) - b + r[1] = (b << 32) + r[1];
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[1] = (uint64_t)t;
|
|
r[1] += (b << 32);
|
|
//t = (t >> 64) | ((uint128_t)t_hi << 64);
|
|
t64 = (r[1] < (b << 32));
|
|
t64 += (b >> 32);
|
|
|
|
//m = ((uint128_t)b * a[2]) + r[2];
|
|
// Since a[2] is 0000000000000000, the above optimizes to:
|
|
// m = b * 0 + r[2] = r[2];
|
|
//t += m;
|
|
// t = t64 + r[2];
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[2] = (uint64_t)t;
|
|
r[2] += t64;
|
|
//t = (t >> 64) | ((uint128_t)t_hi << 64);
|
|
t64 = (r[2] < t64);
|
|
|
|
//m = ((uint128_t)b * a[3]) + r[3];
|
|
// Since a[3] is ffffffff00000001, the above optimizes to:
|
|
// m = b * ffffffff00000001 + r[3];
|
|
// m = b + b*ffffffff00000000 + r[3]
|
|
// m = b + (b*ffffffff << 32) + r[3]
|
|
// m = b + (((b<<32) - b) << 32) + r[3]
|
|
//t += m;
|
|
// t = t64 + (uint128_t)b + ((((uint128_t)b << 32) - b) << 32) + r[3];
|
|
t64 += b;
|
|
t64u = (t64 < b);
|
|
t64 += r[3];
|
|
t64u += (t64 < r[3]);
|
|
{ // add ((((uint128_t)b << 32) - b) << 32):
|
|
uint64_t lo, hi;
|
|
//lo = (((b << 32) - b) << 32
|
|
//hi = (((uint128_t)b << 32) - b) >> 32
|
|
//but without uint128_t:
|
|
hi = (b << 32) - b; /* make lower 32 bits of "hi", part 1 */
|
|
b = (b >> 32) - (/*borrowed above?*/(b << 32) < b); /* upper 32 bits of "hi" are in b */
|
|
lo = hi << 32; /* (use "hi" value to calculate "lo",... */
|
|
t64 += lo; /* ...consume... */
|
|
t64u += (t64 < lo); /* ..."lo") */
|
|
hi >>= 32; /* make lower 32 bits of "hi", part 2 */
|
|
hi |= (b << 32); /* combine lower and upper 32 bits */
|
|
t64u += hi; /* consume "hi" */
|
|
}
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[3] = (uint64_t)t;
|
|
r[3] = t64;
|
|
//t = (t >> 64) | ((uint128_t)t_hi << 64);
|
|
// t = t64u;
|
|
|
|
r[4] += t64u;
|
|
return (r[4] < t64u); /* 1 if addition overflowed */
|
|
# endif
|
|
}
|
|
|
|
static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* aa/*, const sp_digit* m, sp_digit mp*/)
|
|
{
|
|
// const sp_digit* m = p256_mod;
|
|
int i;
|
|
uint64_t *a = (void*)aa;
|
|
|
|
sp_digit carry = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
// mu = a[i];
|
|
if (sp_256_mul_add_4(a+i /*, m, mu*/)) {
|
|
int j = i + 4;
|
|
inc_next_word:
|
|
if (++j > 7) { /* a[8] array has no more words? */
|
|
carry++;
|
|
continue;
|
|
}
|
|
if (++a[j] == 0) /* did this overflow too? */
|
|
goto inc_next_word;
|
|
}
|
|
}
|
|
sp_512to256_mont_shift_8(r, aa);
|
|
if (carry != 0)
|
|
sp_256_sub_8_p256_mod(r);
|
|
}
|
|
|
|
#else /* Generic 32-bit version */
|
|
|
|
/* Mul a by scalar b and add into r. (r += a * b)
|
|
* a = p256_mod
|
|
* b = r[0]
|
|
*/
|
|
static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/)
|
|
{
|
|
sp_digit b = r[0];
|
|
uint64_t t;
|
|
|
|
# if 0
|
|
const sp_digit* a = p256_mod;
|
|
//a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
|
|
int i;
|
|
t = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
uint32_t t_hi;
|
|
uint64_t m = ((uint64_t)b * a[i]) + r[i];
|
|
t += m;
|
|
t_hi = (t < m);
|
|
r[i] = (sp_digit)t;
|
|
t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
}
|
|
r[8] += (sp_digit)t;
|
|
return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
|
|
# else
|
|
// Unroll, then optimize the above loop:
|
|
//uint32_t t_hi;
|
|
uint64_t m;
|
|
uint32_t t32;
|
|
|
|
//m = ((uint64_t)b * a[0]) + r[0];
|
|
// Since b is r[0] and a[0] is ffffffff, the above optimizes to:
|
|
// m = r[0] * ffffffff + r[0] = (r[0] * 100000000 - r[0]) + r[0] = r[0] << 32;
|
|
//t += m;
|
|
// t = r[0] << 32 = b << 32;
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[0] = (sp_digit)t;
|
|
// r[0] = 0;
|
|
//the store can be eliminated since caller won't look at lower 256 bits of the result
|
|
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
// t = b;
|
|
|
|
//m = ((uint64_t)b * a[1]) + r[1];
|
|
// Since a[1] is ffffffff, the above optimizes to:
|
|
// m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1];
|
|
//t += m;
|
|
// t = b + (b << 32) - b + r[1] = (b << 32) + r[1];
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[1] = (sp_digit)t;
|
|
// r[1] = r[1];
|
|
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
// t = b;
|
|
|
|
//m = ((uint64_t)b * a[2]) + r[2];
|
|
// Since a[2] is ffffffff, the above optimizes to:
|
|
// m = b * ffffffff + r[2] = (b * 100000000 - b) + r[2] = (b << 32) - b + r[2];
|
|
//t += m;
|
|
// t = b + (b << 32) - b + r[2] = (b << 32) + r[2]
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[2] = (sp_digit)t;
|
|
// r[2] = r[2];
|
|
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
// t = b;
|
|
|
|
//m = ((uint64_t)b * a[3]) + r[3];
|
|
// Since a[3] is 00000000, the above optimizes to:
|
|
// m = b * 0 + r[3] = r[3];
|
|
//t += m;
|
|
// t = b + r[3];
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[3] = (sp_digit)t;
|
|
r[3] = r[3] + b;
|
|
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
t32 = (r[3] < b); // 0 or 1
|
|
|
|
//m = ((uint64_t)b * a[4]) + r[4];
|
|
// Since a[4] is 00000000, the above optimizes to:
|
|
// m = b * 0 + r[4] = r[4];
|
|
//t += m;
|
|
// t = t32 + r[4];
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[4] = (sp_digit)t;
|
|
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
if (t32 != 0) {
|
|
r[4]++;
|
|
t32 = (r[4] == 0); // 0 or 1
|
|
|
|
//m = ((uint64_t)b * a[5]) + r[5];
|
|
// Since a[5] is 00000000, the above optimizes to:
|
|
// m = b * 0 + r[5] = r[5];
|
|
//t += m;
|
|
// t = t32 + r[5]; (t32 is 0 or 1)
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
//r[5] = (sp_digit)t;
|
|
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
if (t32 != 0) {
|
|
r[5]++;
|
|
t32 = (r[5] == 0); // 0 or 1
|
|
}
|
|
}
|
|
|
|
//m = ((uint64_t)b * a[6]) + r[6];
|
|
// Since a[6] is 00000001, the above optimizes to:
|
|
// m = (uint64_t)b + r[6]; // 33 bits at most
|
|
//t += m;
|
|
t = t32 + (uint64_t)b + r[6];
|
|
//t_hi = (t < m);
|
|
// t_hi = 0;
|
|
r[6] = (sp_digit)t;
|
|
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
t = (t >> 32);
|
|
|
|
//m = ((uint64_t)b * a[7]) + r[7];
|
|
// Since a[7] is ffffffff, the above optimizes to:
|
|
// m = b * ffffffff + r[7] = (b * 100000000 - b) + r[7]
|
|
m = ((uint64_t)b << 32) - b + r[7];
|
|
t += m;
|
|
//t_hi = (t < m);
|
|
// t_hi in fact is always 0 here (256bit * 32bit can't have more than 32 bits of overflow)
|
|
r[7] = (sp_digit)t;
|
|
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
|
t = (t >> 32);
|
|
|
|
r[8] += (sp_digit)t;
|
|
return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
|
|
# endif
|
|
}
|
|
|
|
/* Reduce the number back to 256 bits using Montgomery reduction.
|
|
* Note: the result is NOT guaranteed to be less than p256_mod!
|
|
* (it is only guaranteed to fit into 256 bits).
|
|
*
|
|
* r Result.
|
|
* a Double-wide number to reduce. Clobbered.
|
|
* m The single precision number representing the modulus.
|
|
* mp The digit representing the negative inverse of m mod 2^n.
|
|
*
|
|
* Montgomery reduction on multiprecision integers:
|
|
* Montgomery reduction requires products modulo R.
|
|
* When R is a power of B [in our case R=2^128, B=2^32], there is a variant
|
|
* of Montgomery reduction which requires products only of machine word sized
|
|
* integers. T is stored as an little-endian word array a[0..n]. The algorithm
|
|
* reduces it one word at a time. First an appropriate multiple of modulus
|
|
* is added to make T divisible by B. [In our case, it is p256_mp_mod * a[0].]
|
|
* Then a multiple of modulus is added to make T divisible by B^2.
|
|
* [In our case, it is (p256_mp_mod * a[1]) << 32.]
|
|
* And so on. Eventually T is divisible by R, and after division by R
|
|
* the algorithm is in the same place as the usual Montgomery reduction.
|
|
*/
|
|
static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* a/*, const sp_digit* m, sp_digit mp*/)
|
|
{
|
|
// const sp_digit* m = p256_mod;
|
|
sp_digit mp = p256_mp_mod;
|
|
|
|
int i;
|
|
// sp_digit mu;
|
|
|
|
if (mp != 1) {
|
|
sp_digit word16th = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
// mu = (sp_digit)(a[i] * mp);
|
|
if (sp_256_mul_add_8(a+i /*, m, mu*/)) {
|
|
int j = i + 8;
|
|
inc_next_word0:
|
|
if (++j > 15) { /* a[16] array has no more words? */
|
|
word16th++;
|
|
continue;
|
|
}
|
|
if (++a[j] == 0) /* did this overflow too? */
|
|
goto inc_next_word0;
|
|
}
|
|
}
|
|
sp_512to256_mont_shift_8(r, a);
|
|
if (word16th != 0)
|
|
sp_256_sub_8_p256_mod(r);
|
|
}
|
|
else { /* Same code for explicit mp == 1 (which is always the case for P256) */
|
|
sp_digit word16th = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
// mu = a[i];
|
|
if (sp_256_mul_add_8(a+i /*, m, mu*/)) {
|
|
int j = i + 8;
|
|
inc_next_word:
|
|
if (++j > 15) { /* a[16] array has no more words? */
|
|
word16th++;
|
|
continue;
|
|
}
|
|
if (++a[j] == 0) /* did this overflow too? */
|
|
goto inc_next_word;
|
|
}
|
|
}
|
|
sp_512to256_mont_shift_8(r, a);
|
|
if (word16th != 0)
|
|
sp_256_sub_8_p256_mod(r);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Multiply two Montogmery form numbers mod the modulus (prime).
|
|
* (r = a * b mod m)
|
|
*
|
|
* r Result of multiplication.
|
|
* a First number to multiply in Montogmery form.
|
|
* b Second number to multiply in Montogmery form.
|
|
* m Modulus (prime).
|
|
* mp Montogmery multiplier.
|
|
*/
|
|
static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b
|
|
/*, const sp_digit* m, sp_digit mp*/)
|
|
{
|
|
//const sp_digit* m = p256_mod;
|
|
//sp_digit mp = p256_mp_mod;
|
|
sp_digit t[2 * 8];
|
|
sp_256to512_mul_8(t, a, b);
|
|
sp_512to256_mont_reduce_8(r, t /*, m, mp*/);
|
|
}
|
|
|
|
/* Square the Montgomery form number. (r = a * a mod m)
|
|
*
|
|
* r Result of squaring.
|
|
* a Number to square in Montogmery form.
|
|
* m Modulus (prime).
|
|
* mp Montogmery multiplier.
|
|
*/
|
|
static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a
|
|
/*, const sp_digit* m, sp_digit mp*/)
|
|
{
|
|
//const sp_digit* m = p256_mod;
|
|
//sp_digit mp = p256_mp_mod;
|
|
sp_256_mont_mul_8(r, a, a /*, m, mp*/);
|
|
}
|
|
|
|
static NOINLINE void sp_256_mont_mul_and_reduce_8(sp_digit* r,
|
|
const sp_digit* a, const sp_digit* b
|
|
/*, const sp_digit* m, sp_digit mp*/)
|
|
{
|
|
sp_digit rr[2 * 8];
|
|
|
|
sp_256_mont_mul_8(rr, a, b /*, p256_mod, p256_mp_mod*/);
|
|
memset(rr + 8, 0, sizeof(rr) / 2);
|
|
sp_512to256_mont_reduce_8(r, rr /*, p256_mod, p256_mp_mod*/);
|
|
}
|
|
|
|
/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
|
|
* P256 curve. (r = 1 / a mod m)
|
|
*
|
|
* r Inverse result. Must not coincide with a.
|
|
* a Number to invert.
|
|
*/
|
|
static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a)
|
|
{
|
|
int i;
|
|
|
|
memcpy(r, a, sizeof(sp_digit) * 8);
|
|
for (i = 254; i >= 0; i--) {
|
|
sp_256_mont_sqr_8(r, r /*, p256_mod, p256_mp_mod*/);
|
|
/* p256_mod - 2:
|
|
* ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff - 2
|
|
* Bit pattern:
|
|
* 2 2 2 2 2 2 2 1...1
|
|
* 5 5 4 3 2 1 0 9...0 9...1
|
|
* 543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
|
|
* 111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
|
|
*/
|
|
/*if (p256_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
|
|
if (i >= 224 || i == 192 || (i <= 95 && i != 1))
|
|
sp_256_mont_mul_8(r, r, a /*, p256_mod, p256_mp_mod*/);
|
|
}
|
|
}
|
|
|
|
/* Multiply a number by Montogmery normalizer mod modulus (prime).
|
|
*
|
|
* r The resulting Montgomery form number.
|
|
* a The number to convert.
|
|
*/
|
|
static void sp_256_mod_mul_norm_8(sp_digit* r, const sp_digit* a)
|
|
{
|
|
int64_t t[8];
|
|
int32_t o;
|
|
|
|
#define A(n) ((uint64_t)a[n])
|
|
/* 1 1 0 -1 -1 -1 -1 0 */
|
|
t[0] = 0 + A(0) + A(1) - A(3) - A(4) - A(5) - A(6);
|
|
/* 0 1 1 0 -1 -1 -1 -1 */
|
|
t[1] = 0 + A(1) + A(2) - A(4) - A(5) - A(6) - A(7);
|
|
/* 0 0 1 1 0 -1 -1 -1 */
|
|
t[2] = 0 + A(2) + A(3) - A(5) - A(6) - A(7);
|
|
/* -1 -1 0 2 2 1 0 -1 */
|
|
t[3] = 0 - A(0) - A(1) + 2 * A(3) + 2 * A(4) + A(5) - A(7);
|
|
/* 0 -1 -1 0 2 2 1 0 */
|
|
t[4] = 0 - A(1) - A(2) + 2 * A(4) + 2 * A(5) + A(6);
|
|
/* 0 0 -1 -1 0 2 2 1 */
|
|
t[5] = 0 - A(2) - A(3) + 2 * A(5) + 2 * A(6) + A(7);
|
|
/* -1 -1 0 0 0 1 3 2 */
|
|
t[6] = 0 - A(0) - A(1) + A(5) + 3 * A(6) + 2 * A(7);
|
|
/* 1 0 -1 -1 -1 -1 0 3 */
|
|
t[7] = 0 + A(0) - A(2) - A(3) - A(4) - A(5) + 3 * A(7);
|
|
#undef A
|
|
|
|
t[1] += t[0] >> 32; t[0] &= 0xffffffff;
|
|
t[2] += t[1] >> 32; t[1] &= 0xffffffff;
|
|
t[3] += t[2] >> 32; t[2] &= 0xffffffff;
|
|
t[4] += t[3] >> 32; t[3] &= 0xffffffff;
|
|
t[5] += t[4] >> 32; t[4] &= 0xffffffff;
|
|
t[6] += t[5] >> 32; t[5] &= 0xffffffff;
|
|
t[7] += t[6] >> 32; t[6] &= 0xffffffff;
|
|
o = t[7] >> 32; //t[7] &= 0xffffffff;
|
|
t[0] += o;
|
|
t[3] -= o;
|
|
t[6] -= o;
|
|
t[7] += o;
|
|
r[0] = (sp_digit)t[0];
|
|
t[1] += t[0] >> 32;
|
|
r[1] = (sp_digit)t[1];
|
|
t[2] += t[1] >> 32;
|
|
r[2] = (sp_digit)t[2];
|
|
t[3] += t[2] >> 32;
|
|
r[3] = (sp_digit)t[3];
|
|
t[4] += t[3] >> 32;
|
|
r[4] = (sp_digit)t[4];
|
|
t[5] += t[4] >> 32;
|
|
r[5] = (sp_digit)t[5];
|
|
t[6] += t[5] >> 32;
|
|
r[6] = (sp_digit)t[6];
|
|
// t[7] += t[6] >> 32;
|
|
// r[7] = (sp_digit)t[7];
|
|
r[7] = (sp_digit)t[7] + (sp_digit)(t[6] >> 32);
|
|
}
|
|
|
|
/* Map the Montgomery form projective co-ordinate point to an affine point.
|
|
*
|
|
* r Resulting affine co-ordinate point.
|
|
* p Montgomery form projective co-ordinate point.
|
|
*/
|
|
static void sp_256_map_8(sp_point* r, sp_point* p)
|
|
{
|
|
sp_digit t1[8];
|
|
sp_digit t2[8];
|
|
|
|
sp_256_mont_inv_8(t1, p->z);
|
|
|
|
sp_256_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/);
|
|
|
|
/* x /= z^2 */
|
|
sp_256_mont_mul_and_reduce_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/);
|
|
/* Reduce x to less than modulus */
|
|
if (sp_256_cmp_8(r->x, p256_mod) >= 0)
|
|
sp_256_sub_8_p256_mod(r->x);
|
|
|
|
/* y /= z^3 */
|
|
sp_256_mont_mul_and_reduce_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/);
|
|
/* Reduce y to less than modulus */
|
|
if (sp_256_cmp_8(r->y, p256_mod) >= 0)
|
|
sp_256_sub_8_p256_mod(r->y);
|
|
|
|
memset(r->z, 0, sizeof(r->z));
|
|
r->z[0] = 1;
|
|
}
|
|
|
|
/* Double the Montgomery form projective point p.
|
|
*
|
|
* r Result of doubling point.
|
|
* p Point to double.
|
|
*/
|
|
static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p)
|
|
{
|
|
sp_digit t1[8];
|
|
sp_digit t2[8];
|
|
|
|
/* Put point to double into result */
|
|
if (r != p)
|
|
*r = *p; /* struct copy */
|
|
|
|
if (r->infinity)
|
|
return;
|
|
|
|
/* T1 = Z * Z */
|
|
sp_256_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/);
|
|
/* Z = Y * Z */
|
|
sp_256_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/);
|
|
/* Z = 2Z */
|
|
sp_256_mont_dbl_8(r->z, r->z /*, p256_mod*/);
|
|
/* T2 = X - T1 */
|
|
sp_256_mont_sub_8(t2, r->x, t1 /*, p256_mod*/);
|
|
/* T1 = X + T1 */
|
|
sp_256_mont_add_8(t1, r->x, t1 /*, p256_mod*/);
|
|
/* T2 = T1 * T2 */
|
|
sp_256_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/);
|
|
/* T1 = 3T2 */
|
|
sp_256_mont_tpl_8(t1, t2 /*, p256_mod*/);
|
|
/* Y = 2Y */
|
|
sp_256_mont_dbl_8(r->y, r->y /*, p256_mod*/);
|
|
/* Y = Y * Y */
|
|
sp_256_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/);
|
|
/* T2 = Y * Y */
|
|
sp_256_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/);
|
|
/* T2 = T2/2 */
|
|
sp_256_div2_8(t2 /*, p256_mod*/);
|
|
/* Y = Y * X */
|
|
sp_256_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/);
|
|
/* X = T1 * T1 */
|
|
sp_256_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/);
|
|
/* X = X - Y */
|
|
sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/);
|
|
/* X = X - Y */
|
|
sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/);
|
|
/* Y = Y - X */
|
|
sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/);
|
|
/* Y = Y * T1 */
|
|
sp_256_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/);
|
|
/* Y = Y - T2 */
|
|
sp_256_mont_sub_8(r->y, r->y, t2 /*, p256_mod*/);
|
|
dump_512("y2 %s\n", r->y);
|
|
}
|
|
|
|
/* Add two Montgomery form projective points.
|
|
*
|
|
* r Result of addition.
|
|
* p Frist point to add.
|
|
* q Second point to add.
|
|
*/
|
|
static NOINLINE void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* q)
|
|
{
|
|
sp_digit t1[8];
|
|
sp_digit t2[8];
|
|
sp_digit t3[8];
|
|
sp_digit t4[8];
|
|
sp_digit t5[8];
|
|
|
|
/* Ensure only the first point is the same as the result. */
|
|
if (q == r) {
|
|
sp_point* a = p;
|
|
p = q;
|
|
q = a;
|
|
}
|
|
|
|
/* Check double */
|
|
sp_256_sub_8(t1, p256_mod, q->y);
|
|
if (sp_256_cmp_equal_8(p->x, q->x)
|
|
&& sp_256_cmp_equal_8(p->z, q->z)
|
|
&& (sp_256_cmp_equal_8(p->y, q->y) || sp_256_cmp_equal_8(p->y, t1))
|
|
) {
|
|
sp_256_proj_point_dbl_8(r, p);
|
|
return;
|
|
}
|
|
|
|
if (p->infinity || q->infinity) {
|
|
*r = p->infinity ? *q : *p; /* struct copy */
|
|
return;
|
|
}
|
|
|
|
/* U1 = X1*Z2^2 */
|
|
sp_256_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/);
|
|
/* U2 = X2*Z1^2 */
|
|
sp_256_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/);
|
|
/* S1 = Y1*Z2^3 */
|
|
sp_256_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/);
|
|
/* S2 = Y2*Z1^3 */
|
|
sp_256_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/);
|
|
/* H = U2 - U1 */
|
|
sp_256_mont_sub_8(t2, t2, t1 /*, p256_mod*/);
|
|
/* R = S2 - S1 */
|
|
sp_256_mont_sub_8(t4, t4, t3 /*, p256_mod*/);
|
|
/* Z3 = H*Z1*Z2 */
|
|
sp_256_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/);
|
|
/* X3 = R^2 - H^3 - 2*U1*H^2 */
|
|
sp_256_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_sub_8(r->x, r->x, t5 /*, p256_mod*/);
|
|
sp_256_mont_dbl_8(t1, r->y /*, p256_mod*/);
|
|
sp_256_mont_sub_8(r->x, r->x, t1 /*, p256_mod*/);
|
|
/* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
|
|
sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/);
|
|
sp_256_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/);
|
|
sp_256_mont_sub_8(r->y, r->y, t5 /*, p256_mod*/);
|
|
}
|
|
|
|
/* Multiply the point by the scalar and return the result.
|
|
* If map is true then convert result to affine co-ordinates.
|
|
*
|
|
* r Resulting point.
|
|
* g Point to multiply.
|
|
* k Scalar to multiply by.
|
|
* map Indicates whether to convert result to affine.
|
|
*/
|
|
static void sp_256_ecc_mulmod_8(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/)
|
|
{
|
|
enum { map = 1 }; /* we always convert result to affine coordinates */
|
|
sp_point t[3];
|
|
sp_digit n = n; /* for compiler */
|
|
int c, y;
|
|
|
|
memset(t, 0, sizeof(t));
|
|
|
|
/* t[0] = {0, 0, 1} * norm */
|
|
t[0].infinity = 1;
|
|
/* t[1] = {g->x, g->y, g->z} * norm */
|
|
sp_256_mod_mul_norm_8(t[1].x, g->x);
|
|
sp_256_mod_mul_norm_8(t[1].y, g->y);
|
|
sp_256_mod_mul_norm_8(t[1].z, g->z);
|
|
|
|
/* For every bit, starting from most significant... */
|
|
k += 7;
|
|
c = 256;
|
|
for (;;) {
|
|
if ((c & 0x1f) == 0) {
|
|
if (c == 0)
|
|
break;
|
|
n = *k--;
|
|
}
|
|
|
|
y = (n >> 31);
|
|
dbg("y:%d t[%d] = t[0]+t[1]\n", y, y^1);
|
|
sp_256_proj_point_add_8(&t[y^1], &t[0], &t[1]);
|
|
dump_512("t[0].x %s\n", t[0].x);
|
|
dump_512("t[0].y %s\n", t[0].y);
|
|
dump_512("t[0].z %s\n", t[0].z);
|
|
dump_512("t[1].x %s\n", t[1].x);
|
|
dump_512("t[1].y %s\n", t[1].y);
|
|
dump_512("t[1].z %s\n", t[1].z);
|
|
dbg("t[2] = t[%d]\n", y);
|
|
t[2] = t[y]; /* struct copy */
|
|
dbg("t[2] *= 2\n");
|
|
sp_256_proj_point_dbl_8(&t[2], &t[2]);
|
|
dump_512("t[2].x %s\n", t[2].x);
|
|
dump_512("t[2].y %s\n", t[2].y);
|
|
dump_512("t[2].z %s\n", t[2].z);
|
|
t[y] = t[2]; /* struct copy */
|
|
|
|
n <<= 1;
|
|
c--;
|
|
}
|
|
|
|
if (map)
|
|
sp_256_map_8(r, &t[0]);
|
|
else
|
|
*r = t[0]; /* struct copy */
|
|
|
|
memset(t, 0, sizeof(t)); //paranoia
|
|
}
|
|
|
|
/* Multiply the base point of P256 by the scalar and return the result.
|
|
* If map is true then convert result to affine co-ordinates.
|
|
*
|
|
* r Resulting point.
|
|
* k Scalar to multiply by.
|
|
* map Indicates whether to convert result to affine.
|
|
*/
|
|
static void sp_256_ecc_mulmod_base_8(sp_point* r, sp_digit* k /*, int map*/)
|
|
{
|
|
/* Since this function is called only once, save space:
|
|
* don't have "static const sp_point p256_base = {...}".
|
|
*/
|
|
static const uint8_t p256_base_bin[] = {
|
|
/* x (big-endian) */
|
|
0x6b,0x17,0xd1,0xf2,0xe1,0x2c,0x42,0x47,0xf8,0xbc,0xe6,0xe5,0x63,0xa4,0x40,0xf2,
|
|
0x77,0x03,0x7d,0x81,0x2d,0xeb,0x33,0xa0,0xf4,0xa1,0x39,0x45,0xd8,0x98,0xc2,0x96,
|
|
/* y */
|
|
0x4f,0xe3,0x42,0xe2,0xfe,0x1a,0x7f,0x9b,0x8e,0xe7,0xeb,0x4a,0x7c,0x0f,0x9e,0x16,
|
|
0x2b,0xce,0x33,0x57,0x6b,0x31,0x5e,0xce,0xcb,0xb6,0x40,0x68,0x37,0xbf,0x51,0xf5,
|
|
/* z will be set to 1, infinity flag to "false" */
|
|
};
|
|
sp_point p256_base;
|
|
|
|
sp_256_point_from_bin2x32(&p256_base, p256_base_bin);
|
|
|
|
sp_256_ecc_mulmod_8(r, &p256_base, k /*, map*/);
|
|
}
|
|
|
|
/* Multiply the point by the scalar and serialize the X ordinate.
|
|
* The number is 0 padded to maximum size on output.
|
|
*
|
|
* priv Scalar to multiply the point by.
|
|
* pub2x32 Point to multiply.
|
|
* out32 Buffer to hold X ordinate.
|
|
*/
|
|
static void sp_ecc_secret_gen_256(const sp_digit priv[8], const uint8_t *pub2x32, uint8_t* out32)
|
|
{
|
|
sp_point point[1];
|
|
|
|
#if FIXED_PEER_PUBKEY
|
|
memset((void*)pub2x32, 0x55, 64);
|
|
#endif
|
|
dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */
|
|
dump_hex(" %s\n", pub2x32 + 32, 32);
|
|
|
|
sp_256_point_from_bin2x32(point, pub2x32);
|
|
dump_512("point->x %s\n", point->x);
|
|
dump_512("point->y %s\n", point->y);
|
|
|
|
sp_256_ecc_mulmod_8(point, point, priv);
|
|
|
|
sp_256_to_bin_8(point->x, out32);
|
|
dump_hex("out32: %s\n", out32, 32);
|
|
}
|
|
|
|
/* Generates a random scalar in [1..order-1] range. */
|
|
static void sp_256_ecc_gen_k_8(sp_digit k[8])
|
|
{
|
|
/* Since 32-bit words are "dense", no need to use
|
|
* sp_256_from_bin_8(k, buf) to convert random stream
|
|
* to sp_digit array - just store random bits there directly.
|
|
*/
|
|
tls_get_random(k, 8 * sizeof(k[0]));
|
|
#if FIXED_SECRET
|
|
memset(k, 0x77, 8 * sizeof(k[0]));
|
|
#endif
|
|
|
|
// If scalar is too large, try again (pseudo-code)
|
|
// if (k >= 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 - 1) // order of P256
|
|
// goto pick_another_random;
|
|
// k++; // ensure non-zero
|
|
/* Simpler alternative, at the cost of not choosing some valid
|
|
* random values, and slightly non-uniform distribution */
|
|
if (k[0] == 0)
|
|
k[0] = 1;
|
|
if (k[7] >= 0xffffffff)
|
|
k[7] = 0xfffffffe;
|
|
}
|
|
|
|
/* Makes a random EC key pair. */
|
|
static void sp_ecc_make_key_256(sp_digit privkey[8], uint8_t *pubkey)
|
|
{
|
|
sp_point point[1];
|
|
|
|
sp_256_ecc_gen_k_8(privkey);
|
|
dump_256("privkey %s\n", privkey);
|
|
sp_256_ecc_mulmod_base_8(point, privkey);
|
|
dump_512("point->x %s\n", point->x);
|
|
dump_512("point->y %s\n", point->y);
|
|
sp_256_to_bin_8(point->x, pubkey);
|
|
sp_256_to_bin_8(point->y, pubkey + 32);
|
|
|
|
memset(point, 0, sizeof(point)); //paranoia
|
|
}
|
|
|
|
void FAST_FUNC curve_P256_compute_pubkey_and_premaster(
|
|
uint8_t *pubkey2x32, uint8_t *premaster32,
|
|
const uint8_t *peerkey2x32)
|
|
{
|
|
sp_digit privkey[8];
|
|
|
|
dump_hex("peerkey2x32: %s\n", peerkey2x32, 64);
|
|
sp_ecc_make_key_256(privkey, pubkey2x32);
|
|
dump_hex("pubkey: %s\n", pubkey2x32, 32);
|
|
dump_hex(" %s\n", pubkey2x32 + 32, 32);
|
|
|
|
/* Combine our privkey and peer's public key to generate premaster */
|
|
sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32);
|
|
dump_hex("premaster: %s\n", premaster32, 32);
|
|
}
|