mirror of https://github.com/mirror/busybox.git
612 lines
12 KiB
C
612 lines
12 KiB
C
/*
|
|
* Copyright (C) 2018 Denys Vlasenko
|
|
*
|
|
* Licensed under GPLv2, see file LICENSE in this source tree.
|
|
*/
|
|
#include "tls.h"
|
|
|
|
typedef uint8_t byte;
|
|
typedef uint16_t word16;
|
|
typedef uint32_t word32;
|
|
#define XMEMSET memset
|
|
|
|
#define F25519_SIZE CURVE25519_KEYSIZE
|
|
|
|
/* The code below is taken from wolfssl-3.15.3/wolfcrypt/src/fe_low_mem.c
|
|
* Header comment is kept intact:
|
|
*/
|
|
|
|
/* fe_low_mem.c
|
|
*
|
|
* Copyright (C) 2006-2017 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfSSL.
|
|
*
|
|
* wolfSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
|
|
/* Based from Daniel Beer's public domain work. */
|
|
|
|
#if 0 //UNUSED
|
|
static void fprime_copy(byte *x, const byte *a)
|
|
{
|
|
int i;
|
|
for (i = 0; i < F25519_SIZE; i++)
|
|
x[i] = a[i];
|
|
}
|
|
#endif
|
|
|
|
static void lm_copy(byte* x, const byte* a)
|
|
{
|
|
int i;
|
|
for (i = 0; i < F25519_SIZE; i++)
|
|
x[i] = a[i];
|
|
}
|
|
|
|
#if 0 //UNUSED
|
|
static void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition)
|
|
{
|
|
const byte mask = -condition;
|
|
int i;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++)
|
|
dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
|
|
}
|
|
#endif
|
|
|
|
static void fe_select(byte *dst,
|
|
const byte *zero, const byte *one,
|
|
byte condition)
|
|
{
|
|
const byte mask = -condition;
|
|
int i;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++)
|
|
dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
|
|
}
|
|
|
|
#if 0 //UNUSED
|
|
static void raw_add(byte *x, const byte *p)
|
|
{
|
|
word16 c = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c += ((word16)x[i]) + ((word16)p[i]);
|
|
x[i] = (byte)c;
|
|
c >>= 8;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0 //UNUSED
|
|
static void raw_try_sub(byte *x, const byte *p)
|
|
{
|
|
byte minusp[F25519_SIZE];
|
|
word16 c = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c = ((word16)x[i]) - ((word16)p[i]) - c;
|
|
minusp[i] = (byte)c;
|
|
c = (c >> 8) & 1;
|
|
}
|
|
|
|
fprime_select(x, minusp, x, (byte)c);
|
|
}
|
|
#endif
|
|
|
|
#if 0 //UNUSED
|
|
static int prime_msb(const byte *p)
|
|
{
|
|
int i;
|
|
byte x;
|
|
int shift = 1;
|
|
int z = F25519_SIZE - 1;
|
|
|
|
/*
|
|
Test for any hot bits.
|
|
As soon as one instance is encountered set shift to 0.
|
|
*/
|
|
for (i = F25519_SIZE - 1; i >= 0; i--) {
|
|
shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1);
|
|
z -= shift;
|
|
}
|
|
x = p[z];
|
|
z <<= 3;
|
|
shift = 1;
|
|
for (i = 0; i < 8; i++) {
|
|
shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1);
|
|
z += shift;
|
|
}
|
|
|
|
return z - 1;
|
|
}
|
|
#endif
|
|
|
|
#if 0 //UNUSED
|
|
static void fprime_add(byte *r, const byte *a, const byte *modulus)
|
|
{
|
|
raw_add(r, a);
|
|
raw_try_sub(r, modulus);
|
|
}
|
|
#endif
|
|
|
|
#if 0 //UNUSED
|
|
static void fprime_sub(byte *r, const byte *a, const byte *modulus)
|
|
{
|
|
raw_add(r, modulus);
|
|
raw_try_sub(r, a);
|
|
raw_try_sub(r, modulus);
|
|
}
|
|
#endif
|
|
|
|
#if 0 //UNUSED
|
|
static void fprime_mul(byte *r, const byte *a, const byte *b,
|
|
const byte *modulus)
|
|
{
|
|
word16 c = 0;
|
|
int i,j;
|
|
|
|
XMEMSET(r, 0, F25519_SIZE);
|
|
|
|
for (i = prime_msb(modulus); i >= 0; i--) {
|
|
const byte bit = (b[i >> 3] >> (i & 7)) & 1;
|
|
byte plusa[F25519_SIZE];
|
|
|
|
for (j = 0; j < F25519_SIZE; j++) {
|
|
c |= ((word16)r[j]) << 1;
|
|
r[j] = (byte)c;
|
|
c >>= 8;
|
|
}
|
|
raw_try_sub(r, modulus);
|
|
|
|
fprime_copy(plusa, r);
|
|
fprime_add(plusa, a, modulus);
|
|
|
|
fprime_select(r, r, plusa, bit);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0 //UNUSED
|
|
static void fe_load(byte *x, word32 c)
|
|
{
|
|
word32 i;
|
|
|
|
for (i = 0; i < sizeof(c); i++) {
|
|
x[i] = c;
|
|
c >>= 8;
|
|
}
|
|
|
|
for (; i < F25519_SIZE; i++)
|
|
x[i] = 0;
|
|
}
|
|
#endif
|
|
|
|
static void fe_normalize(byte *x)
|
|
{
|
|
byte minusp[F25519_SIZE];
|
|
word16 c;
|
|
int i;
|
|
|
|
/* Reduce using 2^255 = 19 mod p */
|
|
c = (x[31] >> 7) * 19;
|
|
x[31] &= 127;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c += x[i];
|
|
x[i] = (byte)c;
|
|
c >>= 8;
|
|
}
|
|
|
|
/* The number is now less than 2^255 + 18, and therefore less than
|
|
* 2p. Try subtracting p, and conditionally load the subtracted
|
|
* value if underflow did not occur.
|
|
*/
|
|
c = 19;
|
|
|
|
for (i = 0; i + 1 < F25519_SIZE; i++) {
|
|
c += x[i];
|
|
minusp[i] = (byte)c;
|
|
c >>= 8;
|
|
}
|
|
|
|
c += ((word16)x[i]) - 128;
|
|
minusp[31] = (byte)c;
|
|
|
|
/* Load x-p if no underflow */
|
|
fe_select(x, minusp, x, (c >> 15) & 1);
|
|
}
|
|
|
|
static void lm_add(byte* r, const byte* a, const byte* b)
|
|
{
|
|
word16 c = 0;
|
|
int i;
|
|
|
|
/* Add */
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c >>= 8;
|
|
c += ((word16)a[i]) + ((word16)b[i]);
|
|
r[i] = (byte)c;
|
|
}
|
|
|
|
/* Reduce with 2^255 = 19 mod p */
|
|
r[31] &= 127;
|
|
c = (c >> 7) * 19;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c += r[i];
|
|
r[i] = (byte)c;
|
|
c >>= 8;
|
|
}
|
|
}
|
|
|
|
static void lm_sub(byte* r, const byte* a, const byte* b)
|
|
{
|
|
word32 c = 0;
|
|
int i;
|
|
|
|
/* Calculate a + 2p - b, to avoid underflow */
|
|
c = 218;
|
|
for (i = 0; i + 1 < F25519_SIZE; i++) {
|
|
c += 65280 + ((word32)a[i]) - ((word32)b[i]);
|
|
r[i] = c;
|
|
c >>= 8;
|
|
}
|
|
|
|
c += ((word32)a[31]) - ((word32)b[31]);
|
|
r[31] = c & 127;
|
|
c = (c >> 7) * 19;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c += r[i];
|
|
r[i] = c;
|
|
c >>= 8;
|
|
}
|
|
}
|
|
|
|
#if 0 //UNUSED
|
|
static void lm_neg(byte* r, const byte* a)
|
|
{
|
|
word32 c = 0;
|
|
int i;
|
|
|
|
/* Calculate 2p - a, to avoid underflow */
|
|
c = 218;
|
|
for (i = 0; i + 1 < F25519_SIZE; i++) {
|
|
c += 65280 - ((word32)a[i]);
|
|
r[i] = c;
|
|
c >>= 8;
|
|
}
|
|
|
|
c -= ((word32)a[31]);
|
|
r[31] = c & 127;
|
|
c = (c >> 7) * 19;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c += r[i];
|
|
r[i] = c;
|
|
c >>= 8;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void fe_mul__distinct(byte *r, const byte *a, const byte *b)
|
|
{
|
|
word32 c = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
int j;
|
|
|
|
c >>= 8;
|
|
for (j = 0; j <= i; j++)
|
|
c += ((word32)a[j]) * ((word32)b[i - j]);
|
|
|
|
for (; j < F25519_SIZE; j++)
|
|
c += ((word32)a[j]) *
|
|
((word32)b[i + F25519_SIZE - j]) * 38;
|
|
|
|
r[i] = c;
|
|
}
|
|
|
|
r[31] &= 127;
|
|
c = (c >> 7) * 19;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c += r[i];
|
|
r[i] = c;
|
|
c >>= 8;
|
|
}
|
|
}
|
|
|
|
#if 0 //UNUSED
|
|
static void lm_mul(byte *r, const byte* a, const byte *b)
|
|
{
|
|
byte tmp[F25519_SIZE];
|
|
|
|
fe_mul__distinct(tmp, a, b);
|
|
lm_copy(r, tmp);
|
|
}
|
|
#endif
|
|
|
|
static void fe_mul_c(byte *r, const byte *a, word32 b)
|
|
{
|
|
word32 c = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c >>= 8;
|
|
c += b * ((word32)a[i]);
|
|
r[i] = c;
|
|
}
|
|
|
|
r[31] &= 127;
|
|
c >>= 7;
|
|
c *= 19;
|
|
|
|
for (i = 0; i < F25519_SIZE; i++) {
|
|
c += r[i];
|
|
r[i] = c;
|
|
c >>= 8;
|
|
}
|
|
}
|
|
|
|
static void fe_inv__distinct(byte *r, const byte *x)
|
|
{
|
|
byte s[F25519_SIZE];
|
|
int i;
|
|
|
|
/* This is a prime field, so by Fermat's little theorem:
|
|
*
|
|
* x^(p-1) = 1 mod p
|
|
*
|
|
* Therefore, raise to (p-2) = 2^255-21 to get a multiplicative
|
|
* inverse.
|
|
*
|
|
* This is a 255-bit binary number with the digits:
|
|
*
|
|
* 11111111... 01011
|
|
*
|
|
* We compute the result by the usual binary chain, but
|
|
* alternate between keeping the accumulator in r and s, so as
|
|
* to avoid copying temporaries.
|
|
*/
|
|
|
|
/* 1 1 */
|
|
fe_mul__distinct(s, x, x);
|
|
fe_mul__distinct(r, s, x);
|
|
|
|
/* 1 x 248 */
|
|
for (i = 0; i < 248; i++) {
|
|
fe_mul__distinct(s, r, r);
|
|
fe_mul__distinct(r, s, x);
|
|
}
|
|
|
|
/* 0 */
|
|
fe_mul__distinct(s, r, r);
|
|
|
|
/* 1 */
|
|
fe_mul__distinct(r, s, s);
|
|
fe_mul__distinct(s, r, x);
|
|
|
|
/* 0 */
|
|
fe_mul__distinct(r, s, s);
|
|
|
|
/* 1 */
|
|
fe_mul__distinct(s, r, r);
|
|
fe_mul__distinct(r, s, x);
|
|
|
|
/* 1 */
|
|
fe_mul__distinct(s, r, r);
|
|
fe_mul__distinct(r, s, x);
|
|
}
|
|
|
|
#if 0 //UNUSED
|
|
static void lm_invert(byte *r, const byte *x)
|
|
{
|
|
byte tmp[F25519_SIZE];
|
|
|
|
fe_inv__distinct(tmp, x);
|
|
lm_copy(r, tmp);
|
|
}
|
|
#endif
|
|
|
|
#if 0 //UNUSED
|
|
/* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary
|
|
* storage.
|
|
*/
|
|
static void exp2523(byte *r, const byte *x, byte *s)
|
|
{
|
|
int i;
|
|
|
|
/* This number is a 252-bit number with the binary expansion:
|
|
*
|
|
* 111111... 01
|
|
*/
|
|
|
|
/* 1 1 */
|
|
fe_mul__distinct(r, x, x);
|
|
fe_mul__distinct(s, r, x);
|
|
|
|
/* 1 x 248 */
|
|
for (i = 0; i < 248; i++) {
|
|
fe_mul__distinct(r, s, s);
|
|
fe_mul__distinct(s, r, x);
|
|
}
|
|
|
|
/* 0 */
|
|
fe_mul__distinct(r, s, s);
|
|
|
|
/* 1 */
|
|
fe_mul__distinct(s, r, r);
|
|
fe_mul__distinct(r, s, x);
|
|
}
|
|
#endif
|
|
|
|
#if 0 //UNUSED
|
|
static void fe_sqrt(byte *r, const byte *a)
|
|
{
|
|
byte v[F25519_SIZE];
|
|
byte i[F25519_SIZE];
|
|
byte x[F25519_SIZE];
|
|
byte y[F25519_SIZE];
|
|
|
|
/* v = (2a)^((p-5)/8) [x = 2a] */
|
|
fe_mul_c(x, a, 2);
|
|
exp2523(v, x, y);
|
|
|
|
/* i = 2av^2 - 1 */
|
|
fe_mul__distinct(y, v, v);
|
|
fe_mul__distinct(i, x, y);
|
|
fe_load(y, 1);
|
|
lm_sub(i, i, y);
|
|
|
|
/* r = avi */
|
|
fe_mul__distinct(x, v, a);
|
|
fe_mul__distinct(r, x, i);
|
|
}
|
|
#endif
|
|
|
|
/* Differential addition */
|
|
static void xc_diffadd(byte *x5, byte *z5,
|
|
const byte *x1, const byte *z1,
|
|
const byte *x2, const byte *z2,
|
|
const byte *x3, const byte *z3)
|
|
{
|
|
/* Explicit formulas database: dbl-1987-m3
|
|
*
|
|
* source 1987 Montgomery "Speeding the Pollard and elliptic curve
|
|
* methods of factorization", page 261, fifth display, plus
|
|
* common-subexpression elimination
|
|
* compute A = X2+Z2
|
|
* compute B = X2-Z2
|
|
* compute C = X3+Z3
|
|
* compute D = X3-Z3
|
|
* compute DA = D A
|
|
* compute CB = C B
|
|
* compute X5 = Z1(DA+CB)^2
|
|
* compute Z5 = X1(DA-CB)^2
|
|
*/
|
|
byte da[F25519_SIZE];
|
|
byte cb[F25519_SIZE];
|
|
byte a[F25519_SIZE];
|
|
byte b[F25519_SIZE];
|
|
|
|
lm_add(a, x2, z2);
|
|
lm_sub(b, x3, z3); /* D */
|
|
fe_mul__distinct(da, a, b);
|
|
|
|
lm_sub(b, x2, z2);
|
|
lm_add(a, x3, z3); /* C */
|
|
fe_mul__distinct(cb, a, b);
|
|
|
|
lm_add(a, da, cb);
|
|
fe_mul__distinct(b, a, a);
|
|
fe_mul__distinct(x5, z1, b);
|
|
|
|
lm_sub(a, da, cb);
|
|
fe_mul__distinct(b, a, a);
|
|
fe_mul__distinct(z5, x1, b);
|
|
}
|
|
|
|
/* Double an X-coordinate */
|
|
static void xc_double(byte *x3, byte *z3,
|
|
const byte *x1, const byte *z1)
|
|
{
|
|
/* Explicit formulas database: dbl-1987-m
|
|
*
|
|
* source 1987 Montgomery "Speeding the Pollard and elliptic
|
|
* curve methods of factorization", page 261, fourth display
|
|
* compute X3 = (X1^2-Z1^2)^2
|
|
* compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2)
|
|
*/
|
|
byte x1sq[F25519_SIZE];
|
|
byte z1sq[F25519_SIZE];
|
|
byte x1z1[F25519_SIZE];
|
|
byte a[F25519_SIZE];
|
|
|
|
fe_mul__distinct(x1sq, x1, x1);
|
|
fe_mul__distinct(z1sq, z1, z1);
|
|
fe_mul__distinct(x1z1, x1, z1);
|
|
|
|
lm_sub(a, x1sq, z1sq);
|
|
fe_mul__distinct(x3, a, a);
|
|
|
|
fe_mul_c(a, x1z1, 486662);
|
|
lm_add(a, x1sq, a);
|
|
lm_add(a, z1sq, a);
|
|
fe_mul__distinct(x1sq, x1z1, a);
|
|
fe_mul_c(z3, x1sq, 4);
|
|
}
|
|
|
|
void FAST_FUNC curve25519(byte *result, const byte *e, const byte *q)
|
|
{
|
|
int i;
|
|
|
|
struct {
|
|
/* from wolfssl-3.15.3/wolfssl/wolfcrypt/fe_operations.h */
|
|
/*static const*/ byte f25519_one[F25519_SIZE]; // = {1};
|
|
|
|
/* Current point: P_m */
|
|
byte xm[F25519_SIZE];
|
|
byte zm[F25519_SIZE]; // = {1};
|
|
/* Predecessor: P_(m-1) */
|
|
byte xm1[F25519_SIZE]; // = {1};
|
|
byte zm1[F25519_SIZE]; // = {0};
|
|
} z;
|
|
#define f25519_one z.f25519_one
|
|
#define xm z.xm
|
|
#define zm z.zm
|
|
#define xm1 z.xm1
|
|
#define zm1 z.zm1
|
|
memset(&z, 0, sizeof(z));
|
|
f25519_one[0] = 1;
|
|
zm[0] = 1;
|
|
xm1[0] = 1;
|
|
|
|
/* Note: bit 254 is assumed to be 1 */
|
|
lm_copy(xm, q);
|
|
|
|
for (i = 253; i >= 0; i--) {
|
|
const int bit = (e[i >> 3] >> (i & 7)) & 1;
|
|
byte xms[F25519_SIZE];
|
|
byte zms[F25519_SIZE];
|
|
|
|
/* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */
|
|
xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1);
|
|
xc_double(xm, zm, xm, zm);
|
|
|
|
/* Compute P_(2m+1) */
|
|
xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one);
|
|
|
|
/* Select:
|
|
* bit = 1 --> (P_(2m+1), P_(2m))
|
|
* bit = 0 --> (P_(2m), P_(2m-1))
|
|
*/
|
|
fe_select(xm1, xm1, xm, bit);
|
|
fe_select(zm1, zm1, zm, bit);
|
|
fe_select(xm, xm, xms, bit);
|
|
fe_select(zm, zm, zms, bit);
|
|
}
|
|
|
|
/* Freeze out of projective coordinates */
|
|
fe_inv__distinct(zm1, zm);
|
|
fe_mul__distinct(result, zm1, xm);
|
|
fe_normalize(result);
|
|
}
|