mirror of https://github.com/mirror/busybox.git
bunzip2: make proper fix for the problem "fixed" in rev. 22521
Thanks for Rob Landley <rob@landley.net>1_12_stable
parent
a60936da06
commit
86d88c0990
|
@ -66,7 +66,6 @@ struct group_data {
|
|||
* | grep 'bd->' | sed 's/^.*bd->/bd->/' | sort | $PAGER
|
||||
* and moved it (inbufBitCount) to offset 0.
|
||||
*/
|
||||
|
||||
struct bunzip_data {
|
||||
/* I/O tracking data (file handles, buffers, positions, etc.) */
|
||||
unsigned inbufBitCount, inbufBits;
|
||||
|
@ -102,11 +101,9 @@ static unsigned get_bits(bunzip_data *bd, int bits_wanted)
|
|||
|
||||
/* If we need to get more data from the byte buffer, do so. (Loop getting
|
||||
one byte at a time to enforce endianness and avoid unaligned access.) */
|
||||
|
||||
while ((int)(bd->inbufBitCount) < bits_wanted) {
|
||||
|
||||
/* If we need to read more data from file into byte buffer, do so */
|
||||
|
||||
if (bd->inbufPos == bd->inbufCount) {
|
||||
/* if "no input fd" case: in_fd == -1, read fails, we jump */
|
||||
bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE);
|
||||
|
@ -116,7 +113,6 @@ static unsigned get_bits(bunzip_data *bd, int bits_wanted)
|
|||
}
|
||||
|
||||
/* Avoid 32-bit overflow (dump bit buffer to top of output) */
|
||||
|
||||
if (bd->inbufBitCount >= 24) {
|
||||
bits = bd->inbufBits & ((1 << bd->inbufBitCount) - 1);
|
||||
bits_wanted -= bd->inbufBitCount;
|
||||
|
@ -125,13 +121,11 @@ static unsigned get_bits(bunzip_data *bd, int bits_wanted)
|
|||
}
|
||||
|
||||
/* Grab next 8 bits of input from buffer. */
|
||||
|
||||
bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
|
||||
bd->inbufBitCount += 8;
|
||||
}
|
||||
|
||||
/* Calculate result */
|
||||
|
||||
bd->inbufBitCount -= bits_wanted;
|
||||
bits |= (bd->inbufBits >> bd->inbufBitCount) & ((1 << bits_wanted) - 1);
|
||||
|
||||
|
@ -139,29 +133,24 @@ static unsigned get_bits(bunzip_data *bd, int bits_wanted)
|
|||
}
|
||||
|
||||
/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
|
||||
|
||||
static int get_next_block(bunzip_data *bd)
|
||||
{
|
||||
struct group_data *hufGroup;
|
||||
int dbufCount, nextSym, dbufSize, groupCount, *base, selector,
|
||||
int dbufCount, nextSym, dbufSize, groupCount, *base, *limit, selector,
|
||||
i, j, k, t, runPos, symCount, symTotal, nSelectors, byteCount[256];
|
||||
unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
|
||||
/* limit was int* but was changed to unsigned* - grep for '[x]'
|
||||
* in comment to see where it is important. -- vda */
|
||||
unsigned *dbuf, *limit, origPtr;
|
||||
unsigned *dbuf, origPtr;
|
||||
|
||||
dbuf = bd->dbuf;
|
||||
dbufSize = bd->dbufSize;
|
||||
selectors = bd->selectors;
|
||||
|
||||
/* Reset longjmp I/O error handling */
|
||||
|
||||
i = setjmp(bd->jmpbuf);
|
||||
if (i) return i;
|
||||
|
||||
/* Read in header signature and CRC, then validate signature.
|
||||
(last block signature means CRC is for whole file, return now) */
|
||||
|
||||
i = get_bits(bd, 24);
|
||||
j = get_bits(bd, 24);
|
||||
bd->headerCRC = get_bits(bd, 32);
|
||||
|
@ -171,7 +160,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
/* We can add support for blockRandomised if anybody complains. There was
|
||||
some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
|
||||
it didn't actually work. */
|
||||
|
||||
if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT;
|
||||
origPtr = get_bits(bd, 24);
|
||||
if ((int)origPtr > dbufSize) return RETVAL_DATA_ERROR;
|
||||
|
@ -181,7 +169,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
symbols to deal with, and writes a sparse bitfield indicating which
|
||||
values were present. We make a translation table to convert the symbols
|
||||
back to the corresponding bytes. */
|
||||
|
||||
t = get_bits(bd, 16);
|
||||
symTotal = 0;
|
||||
for (i = 0; i < 16; i++) {
|
||||
|
@ -194,7 +181,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
}
|
||||
|
||||
/* How many different Huffman coding groups does this block use? */
|
||||
|
||||
groupCount = get_bits(bd, 3);
|
||||
if (groupCount < 2 || groupCount > MAX_GROUPS)
|
||||
return RETVAL_DATA_ERROR;
|
||||
|
@ -203,19 +189,16 @@ static int get_next_block(bunzip_data *bd)
|
|||
group. Read in the group selector list, which is stored as MTF encoded
|
||||
bit runs. (MTF=Move To Front, as each value is used it's moved to the
|
||||
start of the list.) */
|
||||
|
||||
nSelectors = get_bits(bd, 15);
|
||||
if (!nSelectors) return RETVAL_DATA_ERROR;
|
||||
for (i = 0; i < groupCount; i++) mtfSymbol[i] = i;
|
||||
for (i = 0; i < nSelectors; i++) {
|
||||
|
||||
/* Get next value */
|
||||
|
||||
for (j = 0; get_bits(bd, 1); j++)
|
||||
if (j >= groupCount) return RETVAL_DATA_ERROR;
|
||||
|
||||
/* Decode MTF to get the next selector */
|
||||
|
||||
uc = mtfSymbol[j];
|
||||
for (;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
|
||||
mtfSymbol[0] = selectors[i] = uc;
|
||||
|
@ -223,10 +206,11 @@ static int get_next_block(bunzip_data *bd)
|
|||
|
||||
/* Read the Huffman coding tables for each group, which code for symTotal
|
||||
literal symbols, plus two run symbols (RUNA, RUNB) */
|
||||
|
||||
symCount = symTotal + 2;
|
||||
for (j = 0; j < groupCount; j++) {
|
||||
unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
|
||||
unsigned char length[MAX_SYMBOLS];
|
||||
/* 8 bits is ALMOST enough for temp[], see below */
|
||||
unsigned temp[MAX_HUFCODE_BITS+1];
|
||||
int minLen, maxLen, pp;
|
||||
|
||||
/* Read Huffman code lengths for each symbol. They're stored in
|
||||
|
@ -235,7 +219,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
(Subtracting 1 before the loop and then adding it back at the end is
|
||||
an optimization that makes the test inside the loop simpler: symbol
|
||||
length 0 becomes negative, so an unsigned inequality catches it.) */
|
||||
|
||||
t = get_bits(bd, 5) - 1;
|
||||
for (i = 0; i < symCount; i++) {
|
||||
for (;;) {
|
||||
|
@ -245,7 +228,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
/* If first bit is 0, stop. Else second bit indicates whether
|
||||
to increment or decrement the value. Optimization: grab 2
|
||||
bits and unget the second if the first was 0. */
|
||||
|
||||
k = get_bits(bd, 2);
|
||||
if (k < 2) {
|
||||
bd->inbufBitCount++;
|
||||
|
@ -253,17 +235,14 @@ static int get_next_block(bunzip_data *bd)
|
|||
}
|
||||
|
||||
/* Add one if second bit 1, else subtract 1. Avoids if/else */
|
||||
|
||||
t += (((k+1) & 2) - 1);
|
||||
}
|
||||
|
||||
/* Correct for the initial -1, to get the final symbol length */
|
||||
|
||||
length[i] = t + 1;
|
||||
}
|
||||
|
||||
/* Find largest and smallest lengths in this group */
|
||||
|
||||
minLen = maxLen = length[0];
|
||||
for (i = 1; i < symCount; i++) {
|
||||
if (length[i] > maxLen) maxLen = length[i];
|
||||
|
@ -280,7 +259,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
* number of bits can have. This is how the Huffman codes can vary in
|
||||
* length: each code with a value>limit[length] needs another bit.
|
||||
*/
|
||||
|
||||
hufGroup = bd->groups + j;
|
||||
hufGroup->minLen = minLen;
|
||||
hufGroup->maxLen = maxLen;
|
||||
|
@ -288,12 +266,10 @@ static int get_next_block(bunzip_data *bd)
|
|||
/* Note that minLen can't be smaller than 1, so we adjust the base
|
||||
and limit array pointers so we're not always wasting the first
|
||||
entry. We do this again when using them (during symbol decoding).*/
|
||||
|
||||
base = hufGroup->base - 1;
|
||||
limit = (unsigned*)hufGroup->limit - 1;
|
||||
limit = hufGroup->limit - 1;
|
||||
|
||||
/* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
|
||||
|
||||
pp = 0;
|
||||
for (i = minLen; i <= maxLen; i++) {
|
||||
temp[i] = limit[i] = 0;
|
||||
|
@ -303,14 +279,14 @@ static int get_next_block(bunzip_data *bd)
|
|||
}
|
||||
|
||||
/* Count symbols coded for at each bit length */
|
||||
|
||||
/* NB: in pathological cases, temp[8] can end ip being 256.
|
||||
* That's why uint8_t is too small for temp[]. */
|
||||
for (i = 0; i < symCount; i++) temp[length[i]]++;
|
||||
|
||||
/* Calculate limit[] (the largest symbol-coding value at each bit
|
||||
* length, which is (previous limit<<1)+symbols at this level), and
|
||||
* base[] (number of symbols to ignore at each bit length, which is
|
||||
* limit minus the cumulative count of symbols coded for already). */
|
||||
|
||||
pp = t = 0;
|
||||
for (i = minLen; i < maxLen; i++) {
|
||||
pp += temp[i];
|
||||
|
@ -321,14 +297,12 @@ static int get_next_block(bunzip_data *bd)
|
|||
each level we're really only interested in the first few bits,
|
||||
so here we set all the trailing to-be-ignored bits to 1 so they
|
||||
don't affect the value>limit[length] comparison. */
|
||||
|
||||
limit[i] = (pp << (maxLen - i)) - 1;
|
||||
pp <<= 1;
|
||||
t += temp[i];
|
||||
base[i+1] = pp - t;
|
||||
}
|
||||
limit[maxLen+1] = INT_MAX; /* Sentinel value for reading next sym. */
|
||||
/* [x] was observed to occasionally have -1 here: -- vda */
|
||||
limit[maxLen] = pp + temp[maxLen] - 1;
|
||||
base[minLen] = 0;
|
||||
}
|
||||
|
@ -338,7 +312,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
and run length encoding, saving the result into dbuf[dbufCount++] = uc */
|
||||
|
||||
/* Initialize symbol occurrence counters and symbol Move To Front table */
|
||||
|
||||
memset(byteCount, 0, sizeof(byteCount)); /* smaller, maybe slower? */
|
||||
for (i = 0; i < 256; i++) {
|
||||
//byteCount[i] = 0;
|
||||
|
@ -350,13 +323,12 @@ static int get_next_block(bunzip_data *bd)
|
|||
runPos = dbufCount = selector = 0;
|
||||
for (;;) {
|
||||
|
||||
/* fetch next Huffman coding group from list. */
|
||||
|
||||
/* Fetch next Huffman coding group from list. */
|
||||
symCount = GROUP_SIZE - 1;
|
||||
if (selector >= nSelectors) return RETVAL_DATA_ERROR;
|
||||
hufGroup = bd->groups + selectors[selector++];
|
||||
base = hufGroup->base - 1;
|
||||
limit = (unsigned*)hufGroup->limit - 1;
|
||||
limit = hufGroup->limit - 1;
|
||||
continue_this_group:
|
||||
|
||||
/* Read next Huffman-coded symbol. */
|
||||
|
@ -370,7 +342,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
dry). The following (up to got_huff_bits:) is equivalent to
|
||||
j = get_bits(bd, hufGroup->maxLen);
|
||||
*/
|
||||
|
||||
while ((int)(bd->inbufBitCount) < hufGroup->maxLen) {
|
||||
if (bd->inbufPos == bd->inbufCount) {
|
||||
j = get_bits(bd, hufGroup->maxLen);
|
||||
|
@ -385,13 +356,11 @@ static int get_next_block(bunzip_data *bd)
|
|||
got_huff_bits:
|
||||
|
||||
/* Figure how how many bits are in next symbol and unget extras */
|
||||
|
||||
i = hufGroup->minLen;
|
||||
while ((unsigned)j > limit[i]) ++i;
|
||||
while (j > limit[i]) ++i;
|
||||
bd->inbufBitCount += (hufGroup->maxLen - i);
|
||||
|
||||
/* Huffman decode value to get nextSym (with bounds checking) */
|
||||
|
||||
if (i > hufGroup->maxLen)
|
||||
return RETVAL_DATA_ERROR;
|
||||
j = (j >> (hufGroup->maxLen - i)) - base[i];
|
||||
|
@ -403,11 +372,9 @@ static int get_next_block(bunzip_data *bd)
|
|||
byte, or a repeated run of the most recent literal byte. First,
|
||||
check if nextSym indicates a repeated run, and if so loop collecting
|
||||
how many times to repeat the last literal. */
|
||||
|
||||
if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */
|
||||
|
||||
/* If this is the start of a new run, zero out counter */
|
||||
|
||||
if (!runPos) {
|
||||
runPos = 1;
|
||||
t = 0;
|
||||
|
@ -420,7 +387,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
the basic or 0/1 method (except all bits 0, which would use no
|
||||
symbols, but a run of length 0 doesn't mean anything in this
|
||||
context). Thus space is saved. */
|
||||
|
||||
t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
|
||||
if (runPos < dbufSize) runPos <<= 1;
|
||||
goto end_of_huffman_loop;
|
||||
|
@ -430,7 +396,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
how many times to repeat the last literal, so append that many
|
||||
copies to our buffer of decoded symbols (dbuf) now. (The last
|
||||
literal used is the one at the head of the mtfSymbol array.) */
|
||||
|
||||
if (runPos) {
|
||||
runPos = 0;
|
||||
if (dbufCount + t >= dbufSize) return RETVAL_DATA_ERROR;
|
||||
|
@ -441,7 +406,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
}
|
||||
|
||||
/* Is this the terminating symbol? */
|
||||
|
||||
if (nextSym > symTotal) break;
|
||||
|
||||
/* At this point, nextSym indicates a new literal character. Subtract
|
||||
|
@ -451,7 +415,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
first symbol in the mtf array, position 0, would have been handled
|
||||
as part of a run above. Therefore 1 unused mtf position minus
|
||||
2 non-literal nextSym values equals -1.) */
|
||||
|
||||
if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR;
|
||||
i = nextSym - 1;
|
||||
uc = mtfSymbol[i];
|
||||
|
@ -460,7 +423,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
* small number of symbols, and are bound by 256 in any case, using
|
||||
* memmove here would typically be bigger and slower due to function
|
||||
* call overhead and other assorted setup costs. */
|
||||
|
||||
do {
|
||||
mtfSymbol[i] = mtfSymbol[i-1];
|
||||
} while (--i);
|
||||
|
@ -468,13 +430,11 @@ static int get_next_block(bunzip_data *bd)
|
|||
uc = symToByte[uc];
|
||||
|
||||
/* We have our literal byte. Save it into dbuf. */
|
||||
|
||||
byteCount[uc]++;
|
||||
dbuf[dbufCount++] = (unsigned)uc;
|
||||
|
||||
/* Skip group initialization if we're not done with this group. Done
|
||||
* this way to avoid compiler warning. */
|
||||
|
||||
end_of_huffman_loop:
|
||||
if (symCount--) goto continue_this_group;
|
||||
}
|
||||
|
@ -487,7 +447,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
*/
|
||||
|
||||
/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
|
||||
|
||||
j = 0;
|
||||
for (i = 0; i < 256; i++) {
|
||||
k = j + byteCount[i];
|
||||
|
@ -496,7 +455,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
}
|
||||
|
||||
/* Figure out what order dbuf would be in if we sorted it. */
|
||||
|
||||
for (i = 0; i < dbufCount; i++) {
|
||||
uc = (unsigned char)(dbuf[i] & 0xff);
|
||||
dbuf[byteCount[uc]] |= (i << 8);
|
||||
|
@ -506,7 +464,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
/* Decode first byte by hand to initialize "previous" byte. Note that it
|
||||
doesn't get output, and if the first three characters are identical
|
||||
it doesn't qualify as a run (hence writeRunCountdown=5). */
|
||||
|
||||
if (dbufCount) {
|
||||
if ((int)origPtr >= dbufCount) return RETVAL_DATA_ERROR;
|
||||
bd->writePos = dbuf[origPtr];
|
||||
|
@ -525,7 +482,6 @@ static int get_next_block(bunzip_data *bd)
|
|||
error (all errors are negative numbers). If out_fd!=-1, outbuf and len
|
||||
are ignored, data is written to out_fd and return is RETVAL_OK or error.
|
||||
*/
|
||||
|
||||
int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
|
||||
{
|
||||
const unsigned *dbuf;
|
||||
|
@ -542,19 +498,15 @@ int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
|
|||
/* We will always have pending decoded data to write into the output
|
||||
buffer unless this is the very first call (in which case we haven't
|
||||
Huffman-decoded a block into the intermediate buffer yet). */
|
||||
|
||||
if (bd->writeCopies) {
|
||||
|
||||
/* Inside the loop, writeCopies means extra copies (beyond 1) */
|
||||
|
||||
--bd->writeCopies;
|
||||
|
||||
/* Loop outputting bytes */
|
||||
|
||||
for (;;) {
|
||||
|
||||
/* If the output buffer is full, snapshot state and return */
|
||||
|
||||
if (gotcount >= len) {
|
||||
bd->writePos = pos;
|
||||
bd->writeCurrent = current;
|
||||
|
@ -563,13 +515,11 @@ int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
|
|||
}
|
||||
|
||||
/* Write next byte into output buffer, updating CRC */
|
||||
|
||||
outbuf[gotcount++] = current;
|
||||
bd->writeCRC = (bd->writeCRC << 8)
|
||||
^ bd->crc32Table[(bd->writeCRC >> 24) ^ current];
|
||||
|
||||
/* Loop now if we're outputting multiple copies of this byte */
|
||||
|
||||
if (bd->writeCopies) {
|
||||
--bd->writeCopies;
|
||||
continue;
|
||||
|
@ -585,35 +535,29 @@ int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
|
|||
/* After 3 consecutive copies of the same byte, the 4th
|
||||
* is a repeat count. We count down from 4 instead
|
||||
* of counting up because testing for non-zero is faster */
|
||||
|
||||
if (--bd->writeRunCountdown) {
|
||||
if (current != previous)
|
||||
bd->writeRunCountdown = 4;
|
||||
} else {
|
||||
|
||||
/* We have a repeated run, this byte indicates the count */
|
||||
|
||||
bd->writeCopies = current;
|
||||
current = previous;
|
||||
bd->writeRunCountdown = 5;
|
||||
|
||||
/* Sometimes there are just 3 bytes (run length 0) */
|
||||
|
||||
if (!bd->writeCopies) goto decode_next_byte;
|
||||
|
||||
/* Subtract the 1 copy we'd output anyway to get extras */
|
||||
|
||||
--bd->writeCopies;
|
||||
}
|
||||
}
|
||||
|
||||
/* Decompression of this block completed successfully */
|
||||
|
||||
bd->writeCRC = ~bd->writeCRC;
|
||||
bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bd->writeCRC;
|
||||
|
||||
/* If this block had a CRC error, force file level CRC error. */
|
||||
|
||||
if (bd->writeCRC != bd->headerCRC) {
|
||||
bd->totalCRC = bd->headerCRC + 1;
|
||||
return RETVAL_LAST_BLOCK;
|
||||
|
@ -622,7 +566,6 @@ int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
|
|||
|
||||
/* Refill the intermediate buffer by Huffman-decoding next block of input */
|
||||
/* (previous is just a convenient unused temp variable here) */
|
||||
|
||||
previous = get_next_block(bd);
|
||||
if (previous) {
|
||||
bd->writeCount = previous;
|
||||
|
@ -634,7 +577,6 @@ int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
|
|||
goto decode_next_byte;
|
||||
}
|
||||
|
||||
|
||||
/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
|
||||
a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
|
||||
ignored, and data is read from file handle into temporary buffer. */
|
||||
|
@ -642,7 +584,6 @@ int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
|
|||
/* Because bunzip2 is used for help text unpacking, and because bb_show_usage()
|
||||
should work for NOFORK applets too, we must be extremely careful to not leak
|
||||
any allocations! */
|
||||
|
||||
int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd, const unsigned char *inbuf,
|
||||
int len)
|
||||
{
|
||||
|
@ -653,16 +594,13 @@ int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd, const unsigned char *in
|
|||
};
|
||||
|
||||
/* Figure out how much data to allocate */
|
||||
|
||||
i = sizeof(bunzip_data);
|
||||
if (in_fd != -1) i += IOBUF_SIZE;
|
||||
|
||||
/* Allocate bunzip_data. Most fields initialize to zero. */
|
||||
|
||||
bd = *bdp = xzalloc(i);
|
||||
|
||||
/* Setup input buffer */
|
||||
|
||||
bd->in_fd = in_fd;
|
||||
if (-1 == in_fd) {
|
||||
/* in this case, bd->inbuf is read-only */
|
||||
|
@ -672,22 +610,18 @@ int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd, const unsigned char *in
|
|||
bd->inbuf = (unsigned char *)(bd + 1);
|
||||
|
||||
/* Init the CRC32 table (big endian) */
|
||||
|
||||
crc32_filltable(bd->crc32Table, 1);
|
||||
|
||||
/* Setup for I/O error handling via longjmp */
|
||||
|
||||
i = setjmp(bd->jmpbuf);
|
||||
if (i) return i;
|
||||
|
||||
/* Ensure that file starts with "BZh['1'-'9']." */
|
||||
|
||||
i = get_bits(bd, 32);
|
||||
if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA;
|
||||
|
||||
/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
|
||||
/* Fourth byte (ascii '1'-'9') indicates block size in units of 100k of
|
||||
uncompressed data. Allocate intermediate buffer for block. */
|
||||
|
||||
bd->dbufSize = 100000 * (i - BZh0);
|
||||
|
||||
/* Cannot use xmalloc - may leak bd in NOFORK case! */
|
||||
|
@ -707,7 +641,6 @@ void FAST_FUNC dealloc_bunzip(bunzip_data *bd)
|
|||
|
||||
|
||||
/* Decompress src_fd to dst_fd. Stops at end of bzip data, not end of file. */
|
||||
|
||||
USE_DESKTOP(long long) int FAST_FUNC
|
||||
unpack_bz2_stream(int src_fd, int dst_fd)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue