mbed-os/features/storage/TESTS/blockdevice/heap_block_device/main.cpp

191 lines
5.6 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed.h"
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "HeapBlockDevice.h"
#include <stdlib.h>
using namespace utest::v1;
// TODO HACK, replace with available ram/heap property
#if defined(TARGET_MTB_MTS_XDOT)
#error [NOT_SUPPORTED] Insufficient heap for heap block device tests
#else
#define TEST_BLOCK_SIZE 128
#define TEST_BLOCK_DEVICE_SIZE 32*TEST_BLOCK_SIZE
#define TEST_BLOCK_COUNT 10
#define TEST_ERROR_MASK 16
const struct {
const char *name;
bd_size_t (BlockDevice::*method)() const;
} ATTRS[] = {
{"read size", &BlockDevice::get_read_size},
{"program size", &BlockDevice::get_program_size},
{"erase size", &BlockDevice::get_erase_size},
{"total size", &BlockDevice::size},
};
// Simple test that read/writes random set of blocks
void test_read_write()
{
uint8_t *dummy = new (std::nothrow) uint8_t[TEST_BLOCK_DEVICE_SIZE];
TEST_SKIP_UNLESS_MESSAGE(dummy, "Not enough memory for test");
delete[] dummy;
HeapBlockDevice bd(TEST_BLOCK_DEVICE_SIZE, TEST_BLOCK_SIZE);
int err = bd.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned a = 0; a < sizeof(ATTRS) / sizeof(ATTRS[0]); a++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i = 3; i >= 0; i--) {
bd_size_t size = (bd.*ATTRS[a].method)();
if (size >= (1ULL << 10 * i)) {
printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[a].name, size >> 10 * i, prefixes[i], size);
break;
}
}
}
unsigned addrwidth = ceil(log(float(bd.size() - 1)) / log(float(16))) + 1;
bd_size_t block_size = bd.get_erase_size();
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
uint8_t *error_mask = new (std::nothrow) uint8_t[TEST_ERROR_MASK];
if (!write_block || !read_block || !error_mask) {
printf("Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
// Find a random block
bd_addr_t block = (rand() * block_size) % bd.size();
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
unsigned seed = rand();
// Fill with random sequence
srand(seed);
for (bd_size_t i = 0; i < block_size; i++) {
write_block[i] = 0xff & rand();
}
// erase, program, and read the block
printf("test %0*llx:%llu...\n", addrwidth, block, block_size);
err = bd.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = bd.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
printf("write %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", write_block[i]);
}
printf("...\n");
err = bd.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
printf("read %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", read_block[i]);
}
printf("...\n");
// Find error mask for debugging
memset(error_mask, 0, TEST_ERROR_MASK);
bd_size_t error_scale = block_size / (TEST_ERROR_MASK * 8);
srand(seed);
for (bd_size_t i = 0; i < TEST_ERROR_MASK * 8; i++) {
for (bd_size_t j = 0; j < error_scale; j++) {
if ((0xff & rand()) != read_block[i * error_scale + j]) {
error_mask[i / 8] |= 1 << (i % 8);
}
}
}
printf("error %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", error_mask[i]);
}
printf("\n");
// Check that the data was unmodified
srand(seed);
for (bd_size_t i = 0; i < block_size; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
}
}
err = bd.deinit();
TEST_ASSERT_EQUAL(0, err);
end:
delete[] write_block;
delete[] read_block;
delete[] error_mask;
}
void test_get_type_functionality()
{
uint8_t *dummy = new (std::nothrow) uint8_t[TEST_BLOCK_DEVICE_SIZE];
TEST_SKIP_UNLESS_MESSAGE(dummy, "Not enough memory for test");
delete[] dummy;
HeapBlockDevice bd(TEST_BLOCK_DEVICE_SIZE, TEST_BLOCK_SIZE);
const char *bd_type = bd.get_type();
TEST_ASSERT_NOT_EQUAL(0, bd_type);
TEST_ASSERT_EQUAL(0, strcmp(bd_type, "HEAP"));
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(30, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Testing read write random blocks", test_read_write),
Case("Testing get type functionality", test_get_type_functionality)
};
Specification specification(test_setup, cases);
int main()
{
return !Harness::run(specification);
}
#endif // defined(TARGET_MTB_MTS_XDOT)