mbed-os/targets/TARGET_NORDIC/TARGET_NRF5x/TARGET_NRF52/us_ticker.c

332 lines
11 KiB
C

/*
* Copyright (c) 2013 Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA
* integrated circuit in a product or a software update for such product, must reproduce
* the above copyright notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific prior
* written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary or object form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "us_ticker_api.h"
#include "common_rtc.h"
#include "app_util.h"
#include "nrf_drv_common.h"
#include "lp_ticker_api.h"
#include "mbed_critical.h"
#if defined(NRF52_ERRATA_20)
#if defined(SOFTDEVICE_PRESENT)
#include "nrf_sdh.h"
#define NRF_HAL_US_TICKER_SD_IS_ENABLED() nrf_sdh_is_enabled()
#else
#define NRF_HAL_US_TICKER_SD_IS_ENABLED() 0
#endif
#endif
//------------------------------------------------------------------------------
// Common stuff used also by lp_ticker and rtc_api (see "common_rtc.h").
//
#include "app_util_platform.h"
bool m_common_rtc_enabled = false;
uint32_t volatile m_common_rtc_overflows = 0;
// lp/us ticker fire interrupt flag for IRQ handler
volatile uint8_t m_common_sw_irq_flag = 0;
__STATIC_INLINE void rtc_ovf_event_check(void)
{
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW)) {
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW);
// Don't disable this event. It shall occur periodically.
++m_common_rtc_overflows;
}
}
#if defined(TARGET_MCU_NRF51822)
void common_rtc_irq_handler(void)
#else
void COMMON_RTC_IRQ_HANDLER(void)
#endif
{
rtc_ovf_event_check();
if ((m_common_sw_irq_flag & US_TICKER_SW_IRQ_MASK) || nrf_rtc_event_pending(COMMON_RTC_INSTANCE, US_TICKER_EVENT)) {
us_ticker_irq_handler();
}
#if DEVICE_LOWPOWERTIMER
if (m_common_sw_irq_flag & LP_TICKER_SW_IRQ_MASK) {
m_common_sw_irq_flag &= ~LP_TICKER_SW_IRQ_MASK;
lp_ticker_irq_handler();
}
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, LP_TICKER_EVENT)) {
lp_ticker_irq_handler();
}
#endif
}
// Function for fix errata 20: RTC Register values are invalid
__STATIC_INLINE void errata_20(void)
{
#if defined(NRF52_ERRATA_20)
if (!NRF_HAL_US_TICKER_SD_IS_ENABLED())
{
NRF_CLOCK->EVENTS_LFCLKSTARTED = 0;
NRF_CLOCK->TASKS_LFCLKSTART = 1;
while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0)
{
}
}
NRF_RTC1->TASKS_STOP = 0;
#endif
}
void RTC1_IRQHandler(void);
void common_rtc_init(void)
{
if (m_common_rtc_enabled) {
return;
}
errata_20();
NVIC_SetVector(RTC1_IRQn, (uint32_t)RTC1_IRQHandler);
// RTC is driven by the low frequency (32.768 kHz) clock, a proper request
// must be made to have it running.
// Currently this clock is started in 'SystemInit' (see "system_nrf51.c"
// or "system_nrf52.c", respectively).
nrf_rtc_prescaler_set(COMMON_RTC_INSTANCE, 0);
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT);
#if defined(TARGET_MCU_NRF51822)
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT);
#endif
#if DEVICE_LOWPOWERTIMER
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, LP_TICKER_EVENT);
#endif
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW);
// Interrupts on all related events are enabled permanently. Particular
// events will be enabled or disabled as needed (such approach is more
// energy efficient).
nrf_rtc_int_enable(COMMON_RTC_INSTANCE,
#if DEVICE_LOWPOWERTIMER
LP_TICKER_INT_MASK |
#endif
US_TICKER_INT_MASK |
NRF_RTC_INT_OVERFLOW_MASK);
// This event is enabled permanently, since overflow indications are needed
// continuously.
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK);
// All other relevant events are initially disabled.
nrf_rtc_event_disable(COMMON_RTC_INSTANCE,
#if defined(TARGET_MCU_NRF51822)
OS_TICK_INT_MASK |
#endif
#if DEVICE_LOWPOWERTIMER
LP_TICKER_INT_MASK |
#endif
US_TICKER_INT_MASK);
nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE),
#ifdef NRF51
APP_IRQ_PRIORITY_LOW
#elif defined(NRF52) || defined(NRF52840_XXAA)
APP_IRQ_PRIORITY_LOWEST
#endif
);
nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START);
m_common_rtc_enabled = true;
}
__STATIC_INLINE void rtc_ovf_event_safe_check(void)
{
core_util_critical_section_enter();
rtc_ovf_event_check();
core_util_critical_section_exit();
}
uint32_t common_rtc_32bit_ticks_get(void)
{
uint32_t ticks;
uint32_t prev_overflows;
do {
prev_overflows = m_common_rtc_overflows;
ticks = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
// The counter used for time measurements is less than 32 bit wide,
// so its value is complemented with the number of registered overflows
// of the counter.
ticks += (m_common_rtc_overflows << RTC_COUNTER_BITS);
// Check in case that OVF occurred during execution of a RTC handler (apply if call was from RTC handler)
// m_common_rtc_overflows might been updated in this call.
rtc_ovf_event_safe_check();
// If call was made from a low priority level m_common_rtc_overflows might have been updated in RTC handler.
} while (m_common_rtc_overflows != prev_overflows);
return ticks;
}
uint64_t common_rtc_64bit_us_get(void)
{
uint32_t ticks = common_rtc_32bit_ticks_get();
// [ticks -> microseconds]
return ROUNDED_DIV(((uint64_t)ticks) * 1000000, RTC_INPUT_FREQ);
}
void common_rtc_set_interrupt(uint32_t us_timestamp, uint32_t cc_channel,
uint32_t int_mask)
{
// The internal counter is clocked with a frequency that cannot be easily
// multiplied to 1 MHz, therefore besides the translation of values
// (microsecond <-> ticks) a special care of overflows handling must be
// taken. Here the 32-bit timestamp value is complemented with information
// about current the system up time of (ticks + number of overflows of tick
// counter on upper bits, converted to microseconds), and such 64-bit value
// is then translated to counter ticks. Finally, the lower 24 bits of thus
// calculated value is written to the counter compare register to prepare
// the interrupt generation.
uint64_t current_time64 = common_rtc_64bit_us_get();
// [add upper 32 bits from the current time to the timestamp value]
uint64_t timestamp64 = (current_time64 & ~(uint64_t)0xFFFFFFFF) | us_timestamp;
// [if the original timestamp value happens to be after the 32 bit counter
// of microsends overflows, correct the upper 32 bits accordingly]
if (timestamp64 < current_time64) {
timestamp64 += ((uint64_t)1 << 32);
}
// [microseconds -> ticks, always round the result up to avoid too early
// interrupt generation]
uint32_t compare_value = RTC_WRAP((uint32_t)CEIL_DIV((timestamp64) * RTC_INPUT_FREQ, 1000000));
core_util_critical_section_enter();
// The COMPARE event occurs when the value in compare register is N and
// the counter value changes from N-1 to N. Therefore, the minimal safe
// difference between the compare value to be set and the current counter
// value is 2 ticks. This guarantees that the compare trigger is properly
// setup before the compare condition occurs.
uint32_t closest_safe_compare = RTC_WRAP(common_rtc_32bit_ticks_get() + 2);
if (closest_safe_compare - compare_value < 2) {
compare_value = closest_safe_compare;
}
nrf_rtc_cc_set(COMMON_RTC_INSTANCE, cc_channel, compare_value);
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, int_mask);
core_util_critical_section_exit();
}
//------------------------------------------------------------------------------
void us_ticker_init(void)
{
common_rtc_init();
}
uint32_t us_ticker_read()
{
us_ticker_init();
return (uint32_t)common_rtc_64bit_us_get();
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
common_rtc_set_interrupt(timestamp,
US_TICKER_CC_CHANNEL, US_TICKER_INT_MASK);
}
void us_ticker_fire_interrupt(void)
{
core_util_critical_section_enter();
m_common_sw_irq_flag |= US_TICKER_SW_IRQ_MASK;
NVIC_SetPendingIRQ(RTC1_IRQn);
core_util_critical_section_exit();
}
void us_ticker_disable_interrupt(void)
{
nrf_rtc_event_disable(COMMON_RTC_INSTANCE, US_TICKER_INT_MASK);
}
void us_ticker_clear_interrupt(void)
{
m_common_sw_irq_flag &= ~US_TICKER_SW_IRQ_MASK;
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT);
}
// Since there is no SysTick on NRF51, the RTC1 channel 1 is used as an
// alternative source of RTOS ticks.
#if defined(TARGET_MCU_NRF51822)
#include "mbed_toolchain.h"
#define MAX_RTC_COUNTER_VAL ((1uL << RTC_COUNTER_BITS) - 1)
#ifndef RTC1_CONFIG_FREQUENCY
#define RTC1_CONFIG_FREQUENCY 32678 // [Hz]
#endif
void COMMON_RTC_IRQ_HANDLER(void)
{
if(!nrf_rtc_event_pending(COMMON_RTC_INSTANCE, OS_TICK_EVENT)) {
common_rtc_irq_handler();
}
}
IRQn_Type mbed_get_m0_tick_irqn()
{
return SWI3_IRQn;
}
#endif // defined(TARGET_MCU_NRF51822)