mbed-os/drivers/source/SerialBase.cpp

490 lines
12 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "drivers/SerialBase.h"
#include "platform/mbed_wait_api.h"
#include "platform/mbed_critical.h"
#include "platform/mbed_power_mgmt.h"
#if DEVICE_SERIAL
namespace mbed {
SerialBase::SerialBase(PinName tx, PinName rx, int baud) :
_init_func(&SerialBase::_init),
#if DEVICE_SERIAL_ASYNCH
_thunk_irq(this),
#endif
_baud(baud),
_tx_pin(tx),
_rx_pin(rx)
{
// No lock needed in the constructor
(this->*_init_func)();
}
SerialBase::SerialBase(const serial_pinmap_t &static_pinmap, int baud) :
_init_func(&SerialBase::_init_direct),
#if DEVICE_SERIAL_ASYNCH
_thunk_irq(this),
#endif
_baud(baud),
_tx_pin(static_pinmap.tx_pin),
_rx_pin(static_pinmap.rx_pin),
_static_pinmap(&static_pinmap)
{
// No lock needed in the constructor
(this->*_init_func)();
}
void SerialBase::baud(int baudrate)
{
lock();
serial_baud(&_serial, baudrate);
_baud = baudrate;
unlock();
}
void SerialBase::format(int bits, Parity parity, int stop_bits)
{
lock();
serial_format(&_serial, bits, (SerialParity)parity, stop_bits);
unlock();
}
int SerialBase::readable()
{
lock();
int ret = serial_readable(&_serial);
unlock();
return ret;
}
int SerialBase::writeable()
{
lock();
int ret = serial_writable(&_serial);
unlock();
return ret;
}
void SerialBase::attach(Callback<void()> func, IrqType type)
{
lock();
const bool enabled { (_rx_enabled &&(type == RxIrq)) || (_tx_enabled &&(type == TxIrq)) };
// If corresponding direction is not enabled only update the handler
if (!enabled) {
_irq[type] = func;
} else {
// Disable interrupts when attaching interrupt handler
core_util_critical_section_enter();
if (func) {
// lock deep sleep only the first time
if (!_irq[type]) {
sleep_manager_lock_deep_sleep();
}
_irq[type] = func;
serial_irq_set(&_serial, (SerialIrq)type, 1);
} else {
// unlock deep sleep only the first time
if (_irq[type]) {
sleep_manager_unlock_deep_sleep();
}
_irq[type] = nullptr;
serial_irq_set(&_serial, (SerialIrq)type, 0);
}
core_util_critical_section_exit();
}
unlock();
}
void SerialBase::_irq_handler(uint32_t id, SerialIrq irq_type)
{
SerialBase *handler = (SerialBase *)id;
if (handler->_irq[irq_type]) {
handler->_irq[irq_type]();
}
}
int SerialBase::_base_getc()
{
// Mutex is already held
return serial_getc(&_serial);
}
int SerialBase::_base_putc(int c)
{
// Mutex is already held
serial_putc(&_serial, c);
return c;
}
void SerialBase::_init()
{
serial_init(&_serial, _tx_pin, _rx_pin);
#if DEVICE_SERIAL_FC
if (_set_flow_control_dp_func) {
(this->*_set_flow_control_dp_func)(_flow_type, _flow1, _flow2);
}
#endif
serial_baud(&_serial, _baud);
serial_irq_handler(&_serial, SerialBase::_irq_handler, (uint32_t)this);
}
void SerialBase::_init_direct()
{
serial_init_direct(&_serial, _static_pinmap);
#if DEVICE_SERIAL_FC
if (_static_pinmap_fc && _set_flow_control_dp_func) {
(this->*_set_flow_control_sp_func)(_flow_type, *_static_pinmap_fc);
}
#endif
serial_baud(&_serial, _baud);
serial_irq_handler(&_serial, SerialBase::_irq_handler, (uint32_t)this);
}
void SerialBase::_deinit()
{
serial_free(&_serial);
}
void SerialBase::enable_input(bool enable)
{
lock();
if (_rx_enabled != enable) {
if (enable && !_tx_enabled) {
(this->*_init_func)();
}
core_util_critical_section_enter();
if (enable) {
// Enable rx IRQ and lock deep sleep if a rx handler is attached
// (indicated by rx IRQ callback not empty)
if (_irq[RxIrq]) {
_irq[RxIrq].call();
sleep_manager_lock_deep_sleep();
serial_irq_set(&_serial, (SerialIrq)RxIrq, 1);
}
} else {
// Disable rx IRQ
serial_irq_set(&_serial, (SerialIrq)RxIrq, 0);
// Unlock deep sleep if a rx handler is attached
// (indicated by rx IRQ callback not empty)
if (_irq[RxIrq]) {
sleep_manager_unlock_deep_sleep();
}
}
core_util_critical_section_exit();
_rx_enabled = enable;
if (!enable && !_tx_enabled) {
_deinit();
}
}
unlock();
}
void SerialBase::enable_output(bool enable)
{
lock();
if (_tx_enabled != enable) {
if (enable && !_rx_enabled) {
(this->*_init_func)();
}
core_util_critical_section_enter();
if (enable) {
// Enable tx IRQ and lock deep sleep if a tx handler is attached
// (indicated by tx IRQ callback not empty)
if (_irq[TxIrq]) {
_irq[TxIrq].call();
sleep_manager_lock_deep_sleep();
serial_irq_set(&_serial, (SerialIrq)TxIrq, 1);
}
} else {
// Disable tx IRQ
serial_irq_set(&_serial, (SerialIrq)TxIrq, 0);
// Unlock deep sleep if a tx handler is attached
// (indicated by tx IRQ callback not empty)
if (_irq[TxIrq]) {
sleep_manager_unlock_deep_sleep();
}
}
core_util_critical_section_exit();
_tx_enabled = enable;
if (!enable && !_rx_enabled) {
_deinit();
}
}
unlock();
}
void SerialBase::set_break()
{
lock();
serial_break_set(&_serial);
unlock();
}
void SerialBase::clear_break()
{
lock();
serial_break_clear(&_serial);
unlock();
}
void SerialBase::send_break()
{
lock();
// Wait for 1.5 frames before clearing the break condition
// This will have different effects on our platforms, but should
// ensure that we keep the break active for at least one frame.
// We consider a full frame (1 start bit + 8 data bits bits +
// 1 parity bit + 2 stop bits = 12 bits) for computation.
// One bit time (in us) = 1000000/_baud
// Twelve bits: 12000000/baud delay
// 1.5 frames: 18000000/baud delay
serial_break_set(&_serial);
wait_us(18000000 / _baud);
serial_break_clear(&_serial);
unlock();
}
void SerialBase::lock()
{
// Stub
}
void SerialBase:: unlock()
{
// Stub
}
SerialBase::~SerialBase()
{
// No lock needed in destructor
// Detaching interrupts releases the sleep lock if it was locked
for (int irq = 0; irq < IrqCnt; irq++) {
attach(nullptr, (IrqType)irq);
}
}
#if DEVICE_SERIAL_FC
void SerialBase::set_flow_control(Flow type, PinName flow1, PinName flow2)
{
MBED_ASSERT(_static_pinmap == NULL); // this function must be used when serial object has been created using dynamic pin-map constructor
_set_flow_control_dp_func = &SerialBase::set_flow_control;
lock();
_flow_type = type;
_flow1 = flow1;
_flow2 = flow2;
FlowControl flow_type = (FlowControl)type;
switch (type) {
case RTS:
serial_set_flow_control(&_serial, flow_type, flow1, NC);
break;
case CTS:
serial_set_flow_control(&_serial, flow_type, NC, flow1);
break;
case RTSCTS:
case Disabled:
serial_set_flow_control(&_serial, flow_type, flow1, flow2);
break;
default:
break;
}
unlock();
}
void SerialBase::set_flow_control(Flow type, const serial_fc_pinmap_t &static_pinmap)
{
MBED_ASSERT(_static_pinmap != NULL); // this function must be used when serial object has been created using static pin-map constructor
_set_flow_control_sp_func = &SerialBase::set_flow_control;
lock();
_static_pinmap_fc = &static_pinmap;
_flow_type = type;
FlowControl flow_type = (FlowControl)type;
serial_set_flow_control_direct(&_serial, flow_type, _static_pinmap_fc);
unlock();
}
#endif
#if DEVICE_SERIAL_ASYNCH
int SerialBase::write(const uint8_t *buffer, int length, const event_callback_t &callback, int event)
{
int result = 0;
lock();
if (!serial_tx_active(&_serial) && !_tx_asynch_set) {
start_write((void *)buffer, length, 8, callback, event);
} else {
result = -1; // transaction ongoing
}
unlock();
return result;
}
int SerialBase::write(const uint16_t *buffer, int length, const event_callback_t &callback, int event)
{
int result = 0;
lock();
if (!serial_tx_active(&_serial) && !_tx_asynch_set) {
start_write((void *)buffer, length, 16, callback, event);
} else {
result = -1; // transaction ongoing
}
unlock();
return result;
}
void SerialBase::start_write(const void *buffer, int buffer_size, char buffer_width, const event_callback_t &callback, int event)
{
_tx_asynch_set = true;
_tx_callback = callback;
_thunk_irq.callback(&SerialBase::interrupt_handler_asynch);
sleep_manager_lock_deep_sleep();
serial_tx_asynch(&_serial, buffer, buffer_size, buffer_width, _thunk_irq.entry(), event, _tx_usage);
}
void SerialBase::abort_write(void)
{
lock();
core_util_critical_section_enter();
if (_tx_asynch_set) {
_tx_callback = nullptr;
_tx_asynch_set = false;
serial_tx_abort_asynch(&_serial);
sleep_manager_unlock_deep_sleep();
}
core_util_critical_section_exit();
unlock();
}
void SerialBase::abort_read(void)
{
lock();
core_util_critical_section_enter();
if (_rx_asynch_set) {
_rx_callback = nullptr;
_rx_asynch_set = false;
serial_rx_abort_asynch(&_serial);
sleep_manager_unlock_deep_sleep();
}
core_util_critical_section_exit();
unlock();
}
int SerialBase::set_dma_usage_tx(DMAUsage usage)
{
if (serial_tx_active(&_serial)) {
return -1;
}
_tx_usage = usage;
return 0;
}
int SerialBase::set_dma_usage_rx(DMAUsage usage)
{
if (serial_tx_active(&_serial)) {
return -1;
}
_rx_usage = usage;
return 0;
}
int SerialBase::read(uint8_t *buffer, int length, const event_callback_t &callback, int event, unsigned char char_match)
{
int result = 0;
lock();
if (!serial_rx_active(&_serial) && !_rx_asynch_set) {
start_read((void *)buffer, length, 8, callback, event, char_match);
} else {
result = -1; // transaction ongoing
}
unlock();
return result;
}
int SerialBase::read(uint16_t *buffer, int length, const event_callback_t &callback, int event, unsigned char char_match)
{
int result = 0;
lock();
if (!serial_rx_active(&_serial) && !_rx_asynch_set) {
start_read((void *)buffer, length, 16, callback, event, char_match);
} else {
result = -1; // transaction ongoing
}
unlock();
return result;
}
void SerialBase::start_read(void *buffer, int buffer_size, char buffer_width, const event_callback_t &callback, int event, unsigned char char_match)
{
_rx_asynch_set = true;
_rx_callback = callback;
_thunk_irq.callback(&SerialBase::interrupt_handler_asynch);
sleep_manager_lock_deep_sleep();
serial_rx_asynch(&_serial, buffer, buffer_size, buffer_width, _thunk_irq.entry(), event, char_match, _rx_usage);
}
void SerialBase::interrupt_handler_asynch(void)
{
int event = serial_irq_handler_asynch(&_serial);
int rx_event = event & SERIAL_EVENT_RX_MASK;
if (_rx_asynch_set && rx_event) {
event_callback_t cb = _rx_callback;
_rx_asynch_set = false;
_rx_callback = nullptr;
if (cb) {
cb.call(rx_event);
}
sleep_manager_unlock_deep_sleep();
}
int tx_event = event & SERIAL_EVENT_TX_MASK;
if (_tx_asynch_set && tx_event) {
event_callback_t cb = _tx_callback;
_tx_asynch_set = false;
_tx_callback = nullptr;
if (cb) {
cb.call(tx_event);
}
sleep_manager_unlock_deep_sleep();
}
}
#endif
} // namespace mbed
#endif