mbed-os/UNITTESTS/moduletests/storage/blockdevice/SlicingBlockDevice/moduletest.cpp

162 lines
5.4 KiB
C++

/* Copyright (c) 2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gtest/gtest.h"
#include "features/storage/blockdevice/HeapBlockDevice.h"
#include "features/storage/blockdevice/SlicingBlockDevice.h"
#define BLOCK_SIZE (512)
#define DEVICE_SIZE (BLOCK_SIZE*10)
class VerifyBorders_HeapBlockDevice : public mbed::HeapBlockDevice {
public:
mutable bool borders_crossed;
mutable bd_size_t lower_limit;
mutable bd_size_t upper_limit;
VerifyBorders_HeapBlockDevice(bd_size_t size)
: HeapBlockDevice(size)
{
borders_crossed = false;
lower_limit = 0;
upper_limit = size;
}
virtual bool is_valid_read(bd_addr_t addr, bd_size_t size) const
{
borders_crossed |= addr < lower_limit;
borders_crossed |= addr + size > upper_limit;
return BlockDevice::is_valid_read(addr, size);
}
virtual bool is_valid_program(bd_addr_t addr, bd_size_t size) const
{
borders_crossed |= addr < lower_limit;
borders_crossed |= addr + size > upper_limit;
return BlockDevice::is_valid_program(addr, size);
}
virtual bool is_valid_erase(bd_addr_t addr, bd_size_t size) const
{
borders_crossed |= addr < lower_limit;
borders_crossed |= addr + size > upper_limit;
return BlockDevice::is_valid_erase(addr, size);
}
};
class SlicingBlockModuleTest : public testing::Test {
protected:
VerifyBorders_HeapBlockDevice bd{DEVICE_SIZE};
uint8_t *magic;
uint8_t *buf;
virtual void SetUp()
{
bd.init();
magic = new uint8_t[BLOCK_SIZE];
buf = new uint8_t[BLOCK_SIZE];
// Generate simple pattern to verify against
for (int i = 0; i < BLOCK_SIZE; i++) {
magic[i] = 0xaa + i;
}
}
virtual void TearDown()
{
bd.deinit();
delete[] magic;
delete[] buf;
}
};
TEST_F(SlicingBlockModuleTest, constructor)
{
mbed::SlicingBlockDevice slice(&bd, 0, bd.size());
EXPECT_EQ(slice.init(), BD_ERROR_OK);
EXPECT_EQ(slice.get_read_size(), bd.get_read_size());
EXPECT_EQ(slice.get_program_size(), bd.get_read_size());
EXPECT_EQ(slice.get_erase_size(), bd.get_read_size());
EXPECT_EQ(slice.get_erase_size(0), bd.get_read_size());
EXPECT_EQ(slice.deinit(), BD_ERROR_OK);
}
TEST_F(SlicingBlockModuleTest, slice_in_middle)
{
uint8_t *program = new uint8_t[BLOCK_SIZE] {0xbb,0xbb,0xbb};
//Write magic value to heap block before and after the space for slice
bd.program(magic, 0, BLOCK_SIZE);
bd.program(magic, BLOCK_SIZE * 3, BLOCK_SIZE);
bd.upper_limit = BLOCK_SIZE * 3;
bd.lower_limit = BLOCK_SIZE;
bd.borders_crossed = false;
//Skip first block, then create sclicing device, with size of 2 blocks
mbed::SlicingBlockDevice slice(&bd, BLOCK_SIZE, BLOCK_SIZE * 3);
EXPECT_EQ(slice.init(), BD_ERROR_OK);
EXPECT_EQ(BLOCK_SIZE * 2, slice.size());
EXPECT_EQ(bd.borders_crossed, false);
//Program a test value
EXPECT_EQ(slice.program(program, 0, BLOCK_SIZE), BD_ERROR_OK);
EXPECT_EQ(slice.program(program, BLOCK_SIZE, BLOCK_SIZE), BD_ERROR_OK);
EXPECT_EQ(bd.borders_crossed, false);
//Verify that blocks before and after the slicing blocks are not touched
bd.read(buf, 0, BLOCK_SIZE);
EXPECT_EQ(0, memcmp(buf, magic, BLOCK_SIZE));
bd.read(buf, BLOCK_SIZE * 3, BLOCK_SIZE);
EXPECT_EQ(0, memcmp(buf, magic, BLOCK_SIZE));
}
TEST_F(SlicingBlockModuleTest, slice_at_the_end)
{
uint8_t *program = new uint8_t[BLOCK_SIZE] {0xbb,0xbb,0xbb};
//Write magic value to heap block before the space for slice
// our bd is 10*BLOCK_SIZE, so sector 7
bd.program(magic, BLOCK_SIZE * 7, BLOCK_SIZE);
//Screate sclicing device, with size of 2 blocks
// Use negative index
mbed::SlicingBlockDevice slice(&bd, -BLOCK_SIZE*2);
EXPECT_EQ(slice.init(), BD_ERROR_OK);
EXPECT_EQ(BLOCK_SIZE * 2, slice.size());
//Program a test value
EXPECT_EQ(slice.program(program, 0, BLOCK_SIZE), BD_ERROR_OK);
EXPECT_EQ(slice.program(program, BLOCK_SIZE, BLOCK_SIZE), BD_ERROR_OK);
//Verify that blocks before and after the slicing blocks are not touched
bd.read(buf, BLOCK_SIZE * 7, BLOCK_SIZE);
EXPECT_EQ(0, memcmp(buf, magic, BLOCK_SIZE));
}
TEST_F(SlicingBlockModuleTest, over_write)
{
uint8_t *program = new uint8_t[BLOCK_SIZE] {0xbb,0xbb,0xbb};
//Screate sclicing device, with size of 2 blocks
mbed::SlicingBlockDevice slice(&bd, BLOCK_SIZE, BLOCK_SIZE * 3);
EXPECT_EQ(slice.init(), BD_ERROR_OK);
EXPECT_EQ(slice.program(program, 0, BLOCK_SIZE), BD_ERROR_OK);
EXPECT_EQ(slice.program(program, BLOCK_SIZE, BLOCK_SIZE), BD_ERROR_OK);
//Program a test value to address that is one pass the device size
EXPECT_EQ(slice.program(program, 2 * BLOCK_SIZE, BLOCK_SIZE), BD_ERROR_DEVICE_ERROR);
delete[] program;
}