mbed-os/targets/TARGET_Maxim/TARGET_MAX32625/mxc/mxc_sys.c

846 lines
26 KiB
C

/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*
* $Date: 2016-06-17 13:05:03 -0500 (Fri, 17 Jun 2016) $
* $Revision: 23367 $
*
******************************************************************************/
#include <stddef.h>
#include "mxc_config.h"
#include "mxc_assert.h"
#include "mxc_sys.h"
#include "ioman.h"
#include "clkman.h"
#include "pwrseq_regs.h"
#include "pwrman_regs.h"
#include "spix_regs.h"
#include "trim_regs.h"
/***** Definitions *****/
#define SYS_RTC_CLK 32768UL
/******************************************************************************/
uint32_t SYS_GetFreq(uint32_t clk_scale)
{
uint32_t freq;
unsigned int clkdiv;
if (clk_scale == MXC_V_CLKMAN_CLK_SCALE_DISABLED) {
freq = 0;
} else {
clkdiv = 1 << (clk_scale - 1);
freq = SystemCoreClock / clkdiv;
}
return freq;
}
/******************************************************************************/
uint32_t SYS_CPU_GetFreq(void)
{
return SYS_GetFreq(CLKMAN_GetClkScale(CLKMAN_CLK_CPU));
}
/******************************************************************************/
int SYS_ADC_Init(void)
{
/* Power up the ADC AFE, enable clocks */
MXC_PWRMAN->pwr_rst_ctrl |= MXC_F_PWRMAN_PWR_RST_CTRL_AFE_POWERED;
MXC_CLKMAN->clk_ctrl |= MXC_F_CLKMAN_CLK_CTRL_ADC_CLOCK_ENABLE;
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_AES_Init(void)
{
/* Set up clocks for AES block */
/* Enable crypto ring oscillator, which is used by all TPU components (AES, uMAA, etc.) */
CLKMAN_CryptoClockEnable(1);
/* Change prescaler to /1 */
CLKMAN_SetClkScale(CLKMAN_CRYPTO_CLK_AES, CLKMAN_SCALE_DIV_1);
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_GPIO_Init(void)
{
if (CLKMAN_GetClkScale(CLKMAN_CLK_GPIO) == CLKMAN_SCALE_DISABLED) {
CLKMAN_SetClkScale(CLKMAN_CLK_GPIO, CLKMAN_SCALE_DIV_1);
}
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_UART_Init(mxc_uart_regs_t *uart, const uart_cfg_t *uart_cfg, const sys_cfg_uart_t *sys_cfg)
{
static int subsequent_call = 0;
int err, idx;
clkman_scale_t clk_scale;
uint32_t min_baud;
if(sys_cfg == NULL)
return E_NULL_PTR;
if (sys_cfg->clk_scale != CLKMAN_SCALE_AUTO) {
CLKMAN_SetClkScale(CLKMAN_CLK_UART, sys_cfg->clk_scale);
} else if (!subsequent_call) {
/* This clock divider is shared amongst all UARTs. Only change it if it
* hasn't already been configured. UART_Init() will check for validity
* for this baudrate.
*/
subsequent_call = 1;
/* Setup the clock divider for the given baud rate */
clk_scale = CLKMAN_SCALE_DISABLED;
do {
min_baud = ((SystemCoreClock >> clk_scale++) / (16 * (MXC_F_UART_BAUD_BAUD_DIVISOR >> MXC_F_UART_BAUD_BAUD_DIVISOR_POS)));
} while (uart_cfg->baud < min_baud && clk_scale < CLKMAN_SCALE_AUTO);
/* check if baud rate cannot be reached */
if(uart_cfg->baud < min_baud)
return E_BAD_STATE;
CLKMAN_SetClkScale(CLKMAN_CLK_UART, clk_scale);
}
if ((err = IOMAN_Config(&sys_cfg->io_cfg)) != E_NO_ERROR) {
return err;
}
/* Reset the peripheral */
idx = MXC_UART_GET_IDX(uart);
MXC_PWRMAN->peripheral_reset |= (MXC_F_PWRMAN_PERIPHERAL_RESET_UART0 << idx);
MXC_PWRMAN->peripheral_reset &= ~((MXC_F_PWRMAN_PERIPHERAL_RESET_UART0 << idx));
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_UART_Shutdown(mxc_uart_regs_t *uart)
{
int err;
int idx = MXC_UART_GET_IDX(uart);
ioman_cfg_t io_cfg = (ioman_cfg_t)IOMAN_UART(idx, 0, 0, 0, 0, 0, 0);
if ((err = IOMAN_Config(&io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
uint32_t SYS_UART_GetFreq(mxc_uart_regs_t *uart)
{
return SYS_GetFreq(CLKMAN_GetClkScale(CLKMAN_CLK_UART));
}
/******************************************************************************/
int SYS_I2CM_Init(mxc_i2cm_regs_t *i2cm, const sys_cfg_i2cm_t *cfg)
{
int err;
if(cfg == NULL)
return E_NULL_PTR;
CLKMAN_SetClkScale(CLKMAN_CLK_I2CM, cfg->clk_scale);
MXC_CLKMAN->i2c_timer_ctrl = 1;
if ((err = IOMAN_Config(&cfg->io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_I2CM_Shutdown(mxc_i2cm_regs_t *i2cm)
{
int err;
int idx = MXC_I2CM_GET_IDX(i2cm);
ioman_cfg_t io_cfg = (ioman_cfg_t)IOMAN_I2CM(idx, 0, 0);
if ((err = IOMAN_Config(&io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
uint32_t SYS_I2CM_GetFreq(mxc_i2cm_regs_t *i2cm)
{
return SYS_GetFreq(CLKMAN_GetClkScale(CLKMAN_CLK_I2CM));
}
/******************************************************************************/
int SYS_I2CS_Init(mxc_i2cs_regs_t *i2cs, const sys_cfg_i2cs_t *cfg)
{
int err;
if(cfg == NULL)
return E_NULL_PTR;
CLKMAN_SetClkScale(CLKMAN_CLK_I2CS, cfg->clk_scale);
MXC_CLKMAN->i2c_timer_ctrl = 1;
if ((err = IOMAN_Config(&cfg->io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_I2CS_Shutdown(mxc_i2cs_regs_t *i2cs)
{
int err;
ioman_cfg_t io_cfg = (ioman_cfg_t)IOMAN_I2CS(0, 0);
if ((err = IOMAN_Config(&io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
uint32_t SYS_I2CS_GetFreq(mxc_i2cs_regs_t *i2cs)
{
uint32_t freq, clkdiv;
if (CLKMAN_GetClkScale(CLKMAN_CLK_I2CS) == MXC_V_CLKMAN_CLK_SCALE_DISABLED) {
freq = 0;
} else {
clkdiv = 1 << (CLKMAN_GetClkScale(CLKMAN_CLK_I2CS) - 1);
freq = (SystemCoreClock / clkdiv);
}
return freq;
}
/******************************************************************************/
int SYS_SPIM_Init(mxc_spim_regs_t *spim, const spim_cfg_t *spim_cfg, const sys_cfg_spim_t *sys_cfg)
{
int err, idx;
clkman_scale_t clk_scale;
uint32_t max_baud;
if(sys_cfg == NULL)
return E_NULL_PTR;
idx = MXC_SPIM_GET_IDX(spim);
if (sys_cfg->clk_scale != CLKMAN_SCALE_AUTO) {
if(spim_cfg->baud > ((SystemCoreClock >> (sys_cfg->clk_scale - 1))/2)) {
return E_BAD_PARAM;
}
CLKMAN_SetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIM0 + idx), sys_cfg->clk_scale);
} else {
if(spim_cfg->baud > (SystemCoreClock/2)) {
return E_BAD_PARAM;
}
/* Setup the clock divider for the given baud rate */
clk_scale = CLKMAN_SCALE_DISABLED;
do {
max_baud = ((SystemCoreClock >> clk_scale++) / 2);
} while (spim_cfg->baud < max_baud && clk_scale < CLKMAN_SCALE_AUTO);
if(clk_scale == CLKMAN_SCALE_AUTO) {
clk_scale--;
}
CLKMAN_SetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIM0 + idx), clk_scale);
}
if ((err = IOMAN_Config(&sys_cfg->io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_SPIM_Shutdown(mxc_spim_regs_t *spim)
{
int err;
int idx = MXC_SPIM_GET_IDX(spim);
ioman_cfg_t io_cfg;
switch(idx) {
case 0:
io_cfg = (ioman_cfg_t)IOMAN_SPIM0(0, 0, 0, 0, 0, 0, 0, 0);
break;
case 1:
io_cfg = (ioman_cfg_t)IOMAN_SPIM1(0, 0, 0, 0, 0, 0);
break;
case 2:
io_cfg = (ioman_cfg_t)IOMAN_SPIM2(0, 0, 0, 0, 0, 0, 0, 0);
break;
default:
return E_BAD_PARAM;
}
if ((err = IOMAN_Config(&io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
uint32_t SYS_SPIM_GetFreq(mxc_spim_regs_t *spim)
{
int idx = MXC_SPIM_GET_IDX(spim);
return SYS_GetFreq(CLKMAN_GetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIM0 + idx)));
}
/******************************************************************************/
int SYS_SPIX_Init(const sys_cfg_spix_t *sys_cfg, uint32_t baud)
{
int err;
clkman_scale_t clk_scale;
uint32_t min_baud;
if (sys_cfg->clk_scale != CLKMAN_SCALE_AUTO) {
CLKMAN_SetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIX), sys_cfg->clk_scale);
} else {
/* Setup the clock divider for the given baud rate */
clk_scale = CLKMAN_SCALE_DISABLED;
do {
min_baud = ((SystemCoreClock >> clk_scale++) / (2 *
(MXC_F_SPIX_MASTER_CFG_SCK_HI_CLK >> MXC_F_SPIX_MASTER_CFG_SCK_HI_CLK_POS)));
} while (baud < min_baud && clk_scale < CLKMAN_SCALE_AUTO);
/* check if baud rate cannot be reached */
if(baud < min_baud)
return E_BAD_STATE;
CLKMAN_SetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIX), clk_scale);
}
if ((err = IOMAN_Config(&sys_cfg->io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_SPIX_Shutdown(void)
{
int err;
ioman_cfg_t io_cfg = IOMAN_SPIX(0, 0, 0, 0, 0, 0);
if ((err = IOMAN_Config(&io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
uint32_t SYS_SPIX_GetFreq(void)
{
return SYS_GetFreq(CLKMAN_GetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIX)));
}
/******************************************************************************/
int SYS_SPIS_Init(const sys_cfg_spis_t *sys_cfg)
{
int err;
if (sys_cfg->clk_scale != CLKMAN_SCALE_AUTO) {
CLKMAN_SetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIS), sys_cfg->clk_scale);
} else {
CLKMAN_SetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIS), CLKMAN_SCALE_DIV_1);
}
if ((err = IOMAN_Config(&sys_cfg->io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_SPIS_Shutdown(mxc_spis_regs_t *spis)
{
int err;
ioman_cfg_t io_cfg = IOMAN_SPIS(0, 0, 0);
if ((err = IOMAN_Config(&io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
uint32_t SYS_SPIS_GetFreq(mxc_spis_regs_t *spis)
{
return SYS_GetFreq(CLKMAN_GetClkScale((clkman_clk_t)(CLKMAN_CLK_SPIS)));
}
/******************************************************************************/
int SYS_OWM_Init(mxc_owm_regs_t *owm, const sys_cfg_owm_t *sys_cfg)
{
int err;
if(sys_cfg == NULL)
return E_NULL_PTR;
if (sys_cfg->clk_scale != CLKMAN_SCALE_AUTO) {
CLKMAN_SetClkScale(CLKMAN_CLK_OWM, sys_cfg->clk_scale);
} else {
CLKMAN_SetClkScale(CLKMAN_CLK_OWM, CLKMAN_SCALE_DIV_1);
}
if ((err = IOMAN_Config(&sys_cfg->io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
int SYS_OWM_Shutdown(mxc_owm_regs_t *owm)
{
int err;
ioman_cfg_t io_cfg = IOMAN_OWM(0, 0);
if ((err = IOMAN_Config(&io_cfg)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
uint32_t SYS_OWM_GetFreq(mxc_owm_regs_t *owm)
{
return SYS_GetFreq(CLKMAN_GetClkScale(CLKMAN_CLK_OWM));
}
/******************************************************************************/
uint32_t SYS_TMR_GetFreq(mxc_tmr_regs_t *tmr)
{
return SystemCoreClock;
}
/******************************************************************************/
int SYS_TMR_Init(mxc_tmr_regs_t *tmr, const sys_cfg_tmr_t *cfg)
{
int pin, gpio_index, tmr_index;
if (cfg != NULL) {
/* Make sure the given GPIO mapps to the given TMR */
for (pin = 0; pin < MXC_GPIO_MAX_PINS_PER_PORT; pin++) {
if(cfg->mask & (1 << pin)) {
gpio_index = (MXC_GPIO_MAX_PINS_PER_PORT * cfg->port) + pin;
tmr_index = gpio_index % MXC_CFG_TMR_INSTANCES;
if(tmr_index == MXC_TMR_GET_IDX(tmr))
return GPIO_Config(cfg);
else
return E_BAD_PARAM;
}
}
return E_BAD_PARAM;
} else {
return E_NO_ERROR;
}
}
/******************************************************************************/
uint32_t SYS_SysTick_GetFreq(void)
{
/* Determine is using internal (SystemCoreClock) or external (32768) clock */
if ( (SysTick->CTRL & SysTick_CTRL_CLKSOURCE_Msk) || !(SysTick->CTRL & SysTick_CTRL_ENABLE_Msk)) {
return SystemCoreClock;
} else {
return SYS_RTC_CLK;
}
}
/******************************************************************************/
uint32_t SYS_PT_GetFreq(void)
{
return SYS_GetFreq(CLKMAN_GetClkScale(CLKMAN_CLK_PT));
}
/******************************************************************************/
void SYS_PT_Init(sys_pt_clk_scale clk_scale)
{
/* setup clock divider for pulse train clock */
CLKMAN_SetClkScale(CLKMAN_CLK_PT, clk_scale);
}
/******************************************************************************/
int SYS_PT_Config(mxc_pt_regs_t *pt, const sys_cfg_pt_t *cfg)
{
int pt_index;
/* Make sure the given GPIO mapps to the given PT */
pt_index = MXC_PT_GET_IDX(pt);
if(pt_index < 0) {
return E_NOT_SUPPORTED;
}
/* Even number port */
if(cfg->port%2 == 0) {
/* Pin number should match PT number */
if(!(cfg->mask & (0x1 << pt_index))) {
return E_NOT_SUPPORTED;
}
} else {
/* Pin number+8 should match PT */
if(!((cfg->mask << 8) & (0x1 << pt_index))) {
return E_NOT_SUPPORTED;
}
}
return GPIO_Config(cfg);
}
/******************************************************************************/
void SYS_USB_Enable(uint8_t enable)
{
/* Enable USB clock */
CLKMAN_ClockGate(CLKMAN_USB_CLOCK, enable);
if(enable) {
/* Enable USB Power */
MXC_PWRMAN->pwr_rst_ctrl |= MXC_F_PWRMAN_PWR_RST_CTRL_USB_POWERED;
} else {
/* Disable USB Power */
MXC_PWRMAN->pwr_rst_ctrl &= ~MXC_F_PWRMAN_PWR_RST_CTRL_USB_POWERED;
}
}
/******************************************************************************/
int SYS_SysTick_Config(uint32_t ticks, int clk_src)
{
if(ticks == 0)
return E_BAD_PARAM;
/* If SystemClock, call default CMSIS config and return */
if (clk_src) {
return SysTick_Config(ticks);
} else {
/* External clock source requested
enable RTC clock in run mode*/
MXC_PWRSEQ->reg0 |= (MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN);
/* Disable SysTick Timer */
SysTick->CTRL = 0;
/* Check reload value for valid */
if ((ticks - 1) > SysTick_LOAD_RELOAD_Msk) {
/* Reload value impossible */
return E_BAD_PARAM;
}
/* set reload register */
SysTick->LOAD = ticks - 1;
/* set Priority for Systick Interrupt */
NVIC_SetPriority(SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);
/* Load the SysTick Counter Value */
SysTick->VAL = 0;
/* Enable SysTick IRQ and SysTick Timer leaving clock source as external */
SysTick->CTRL = SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk;
/* Function successful */
return E_NO_ERROR;
}
}
/******************************************************************************/
int SYS_SysTick_Delay(uint32_t ticks)
{
uint32_t cur_ticks, num_full, num_remain, previous_ticks, num_subtract, i;
uint32_t reload, value, ctrl; /* save/restore variables */
if(ticks == 0)
return E_BAD_PARAM;
/* If SysTick is not enabled we can take it for our delay */
if (!(SysTick->CTRL & SysTick_CTRL_ENABLE_Msk)) {
/* Save current state in case it's disabled but already configured, restore at return.*/
reload = SysTick->LOAD;
value = SysTick->VAL;
ctrl = SysTick->CTRL;
/* get the number of ticks less than max RELOAD. */
num_remain = ticks % SysTick_LOAD_RELOAD_Msk;
/* if ticks is < Max SysTick Reload num_full will be 0, otherwise it will
give us the number of max SysTicks cycles required */
num_full = (ticks - 1) / SysTick_LOAD_RELOAD_Msk;
/* Do the required full systick countdowns */
if (num_full) {
/* load the max count value into systick */
SysTick->LOAD = SysTick_LOAD_RELOAD_Msk;
/* load the starting value */
SysTick->VAL = 0;
/*enable SysTick counter with SystemClock source internal, immediately forces LOAD register into VAL register */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk;
/* CountFlag will get set when VAL reaches zero */
for (i = num_full; i > 0; i--) {
do {
cur_ticks = SysTick->CTRL;
} while (!(cur_ticks & SysTick_CTRL_COUNTFLAG_Msk));
}
/* Disable systick */
SysTick->CTRL = 0;
}
/* Now handle the remainder of ticks */
if (num_remain) {
SysTick->LOAD = num_remain;
SysTick->VAL = 0;
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk;
/* wait for countflag to get set */
do {
cur_ticks = SysTick->CTRL;
} while (!(cur_ticks & SysTick_CTRL_COUNTFLAG_Msk));
/* Disable systick */
SysTick->CTRL = 0;
}
/* restore original state of SysTick and return */
SysTick->LOAD = reload;
SysTick->VAL = value;
SysTick->CTRL = ctrl;
return E_NO_ERROR;
} else {
/* SysTick is enabled
When SysTick is enabled count flag can not be used
and the reload can not be changed.
Do not read the CTRL register -> clears count flag */
/* Get the reload value for wrap/reload case */
reload = SysTick->LOAD;
/* Read the starting systick value */
previous_ticks = SysTick->VAL;
do {
/* get current SysTick value */
cur_ticks = SysTick->VAL;
/* Check for wrap/reload of timer countval */
if (cur_ticks > previous_ticks) {
/* subtract count to 0 (previous_ticks) and wrap (reload value - cur_ticks) */
num_subtract = (previous_ticks + (reload - cur_ticks));
} else {
/* standard case (no wrap)
subtract off the number of ticks since last pass */
num_subtract = (previous_ticks - cur_ticks);
}
/* check to see if we are done. */
if (num_subtract >= ticks)
return E_NO_ERROR;
else
ticks -= num_subtract;
/* cur_ticks becomes previous_ticks for next timer read. */
previous_ticks = cur_ticks;
} while (ticks > 0);
/* Should not ever be reached */
return E_NO_ERROR;
}
}
/******************************************************************************/
int SYS_RTC_Init(void)
{
/* Enable power for RTC for all LPx states */
MXC_PWRSEQ->reg0 |= (MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN |
MXC_F_PWRSEQ_REG0_PWR_RTCEN_SLP);
/* Enable clock to synchronizers */
CLKMAN_SetClkScale(CLKMAN_CLK_SYNC, CLKMAN_SCALE_DIV_1);
return E_NO_ERROR;
}
/******************************************************************************/
void SYS_IOMAN_UseVDDIO(const gpio_cfg_t *cfg)
{
unsigned int startbit = (cfg->port * 8);
volatile uint32_t *use_vddioh_reg = &MXC_IOMAN->use_vddioh_0 + (startbit / 32);
*use_vddioh_reg &= ~cfg->mask << (startbit % 32);
}
/******************************************************************************/
void SYS_IOMAN_UseVDDIOH(const gpio_cfg_t *cfg)
{
unsigned int startbit = (cfg->port * 8);
volatile uint32_t *use_vddioh_reg = &MXC_IOMAN->use_vddioh_0 + (startbit / 32);
*use_vddioh_reg |= cfg->mask << (startbit % 32);
}
/******************************************************************************/
void SYS_WDT_Init(mxc_wdt_regs_t *wdt, const sys_cfg_wdt_t *cfg)
{
if(cfg->clk == CLKMAN_WDT_SELECT_NANO_RING_OSCILLATOR) {
/*enable nanoring in run mode */
MXC_PWRSEQ->reg0 |= (MXC_F_PWRSEQ_REG0_PWR_NREN_RUN);
} else if(cfg->clk == CLKMAN_WDT_SELECT_32KHZ_RTC_OSCILLATOR) {
/*enabled RTC in run mode */
MXC_PWRSEQ->reg0 |= (MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN);
}
if(wdt == MXC_WDT0) {
/*select clock source */
CLKMAN_WdtClkSelect(0, cfg->clk);
/*Set scale of clock (only used for system clock as source) */
CLKMAN_SetClkScale(CLKMAN_CLK_WDT0, cfg->clk_scale);
/*Enable clock */
CLKMAN_ClockGate(CLKMAN_WDT0_CLOCK, 1);
} else if (wdt == MXC_WDT1) {
/*select clock source */
CLKMAN_WdtClkSelect(1, cfg->clk);
/*Set scale of clock (only used for system clock as source) */
CLKMAN_SetClkScale(CLKMAN_CLK_WDT1, cfg->clk_scale);
/*Enable clock */
CLKMAN_ClockGate(CLKMAN_WDT1_CLOCK, 1);
}
}
/******************************************************************************/
void SYS_PRNG_Init(void)
{
/* Start crypto ring, unconditionally */
CLKMAN_CryptoClockEnable(1);
/* If we find the dividers in anything other than off, don't touch them */
if (CLKMAN_GetClkScale(CLKMAN_CRYPTO_CLK_PRNG) == CLKMAN_SCALE_DISABLED) {
/* Div 1 mode */
CLKMAN_SetClkScale(CLKMAN_CRYPTO_CLK_PRNG, CLKMAN_SCALE_DIV_1);
}
if (CLKMAN_GetClkScale(CLKMAN_CLK_PRNG) == CLKMAN_SCALE_DISABLED) {
/* Div 1 mode */
CLKMAN_SetClkScale(CLKMAN_CLK_PRNG, CLKMAN_SCALE_DIV_1);
}
}
/******************************************************************************/
void SYS_MAA_Init(void)
{
/* Start crypto ring, unconditionally */
CLKMAN_CryptoClockEnable(1);
/* If we find the dividers in anything other than off, don't touch them */
if (CLKMAN_GetClkScale(CLKMAN_CRYPTO_CLK_MAA) == CLKMAN_SCALE_DISABLED) {
/* Div 1 mode */
CLKMAN_SetClkScale(CLKMAN_CRYPTO_CLK_MAA, CLKMAN_SCALE_DIV_1);
}
}
/******************************************************************************/
uint32_t SYS_SRAM_GetSize(void)
{
uint32_t memSize;
/* Read TRIM value*/
int SRAMtrim = (MXC_TRIM->reg10_mem_size & MXC_F_TRIM_REG10_MEM_SIZE_SRAM) >> MXC_F_TRIM_REG10_MEM_SIZE_SRAM_POS;
/* Decode trim value into memory size in bytes */
switch(SRAMtrim) {
case MXC_V_TRIM_REG10_MEM_SRAM_THREE_FOURTHS_SIZE:
memSize = (MXC_SRAM_FULL_MEM_SIZE >> 2) * 3;
break;
case MXC_V_TRIM_REG10_MEM_SRAM_HALF_SIZE:
memSize = MXC_SRAM_FULL_MEM_SIZE >> 1;
break;
default: /* other values are FULL size */
memSize = MXC_SRAM_FULL_MEM_SIZE;
break;
}
/* Returns size in bytes */
return memSize;
}
/******************************************************************************/
uint32_t SYS_FLASH_GetSize(void)
{
uint32_t memSize;
/* Read TRIM value */
int FLASHtrim = (MXC_TRIM->reg10_mem_size & MXC_F_TRIM_REG10_MEM_SIZE_FLASH) >> MXC_F_TRIM_REG10_MEM_SIZE_FLASH_POS;
/* Decode trim value into memory size in bytes*/
switch(FLASHtrim) {
case MXC_V_TRIM_REG10_MEM_FLASH_THREE_FOURTHS_SIZE:
memSize = (MXC_FLASH_FULL_MEM_SIZE >> 2) * 3;
break;
case MXC_V_TRIM_REG10_MEM_FLASH_HALF_SIZE:
memSize = (MXC_FLASH_FULL_MEM_SIZE >> 1);
break;
case MXC_V_TRIM_REG10_MEM_FLASH_THREE_EIGHTHS_SIZE:
memSize = (MXC_FLASH_FULL_MEM_SIZE >> 3) * 3;
break;
case MXC_V_TRIM_REG10_MEM_FLASH_FOURTH_SIZE:
memSize = (MXC_FLASH_FULL_MEM_SIZE >> 2);
break;
default: /* other values are FULL size */
memSize = MXC_FLASH_FULL_MEM_SIZE;
break;
}
/* Returns size in bytes */
return memSize;
}