mbed-os/targets/TARGET_Silicon_Labs/TARGET_EFM32/pwmout_api.c

356 lines
10 KiB
C

/***************************************************************************//**
* @file pwmout_api.c
*******************************************************************************
* @section License
* <b>(C) Copyright 2015 Silicon Labs, http://www.silabs.com</b>
*******************************************************************************
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include "device.h"
#include "clocking.h"
#if DEVICE_PWMOUT
#include "mbed_assert.h"
#include "mbed_power_mgmt.h"
#include "pwmout_api.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "device_peripherals.h"
#include "em_cmu.h"
#include "em_gpio.h"
#include "em_timer.h"
static uint32_t pwm_prescaler_div;
float pwmout_calculate_duty(uint32_t width_cycles, uint32_t period_cycles);
void pwmout_write_channel(uint32_t channel, float value);
uint32_t pwmout_get_channel_route(uint32_t channel)
{
MBED_ASSERT(channel != (PWMName) NC);
switch (channel) {
#ifdef TIMER_ROUTEPEN_CC0PEN
case PWM_CH0:
return TIMER_ROUTEPEN_CC0PEN;
break;
case PWM_CH1:
return TIMER_ROUTEPEN_CC1PEN;
break;
case PWM_CH2:
return TIMER_ROUTEPEN_CC2PEN;
break;
case PWM_CH3:
return TIMER_ROUTEPEN_CC3PEN;
break;
#else
case PWM_CH0:
return TIMER_ROUTE_CC0PEN;
break;
case PWM_CH1:
return TIMER_ROUTE_CC1PEN;
break;
case PWM_CH2:
return TIMER_ROUTE_CC2PEN;
break;
#endif
default:
return 0;
}
}
/*
* Disables the route location given. Returns true if it was enabled, false if it wasn't.
*/
bool pwmout_disable_channel_route(uint32_t routeloc) {
#ifdef TIMER_ROUTEPEN_CC0PEN
if(PWM_TIMER->ROUTEPEN & routeloc) {
//This channel was in use, so disable
PWM_TIMER->ROUTEPEN &= ~routeloc;
return true;
}
#else
if(PWM_TIMER->ROUTE & routeloc) {
//This channel was in use, so disable
PWM_TIMER->ROUTE &= ~routeloc;
return true;
}
#endif
return false;
}
/*
* Check if a channel is active
*/
bool pwmout_channel_route_active(uint32_t routeloc) {
#ifdef TIMER_ROUTEPEN_CC0PEN
if(PWM_TIMER->ROUTEPEN & routeloc) {
return true;
}
#else
if(PWM_TIMER->ROUTE & routeloc) {
return true;
}
#endif
return false;
}
/*
* Set the given route PEN flag
*/
void pwmout_set_channel_route(uint32_t routeloc) {
#ifdef TIMER_ROUTEPEN_CC0PEN
PWM_TIMER->ROUTEPEN |= routeloc;
#else
PWM_TIMER->ROUTE |= routeloc;
#endif
}
/*
* Check if all routes are disabled
*/
bool pwmout_all_inactive(void) {
#ifdef TIMER_ROUTEPEN_CC0PEN
if(PWM_TIMER->ROUTEPEN == _TIMER_ROUTEPEN_RESETVALUE) {
return true;
}
#else
if (!(PWM_TIMER->ROUTE & (TIMER_ROUTE_CC0PEN | TIMER_ROUTE_CC1PEN | TIMER_ROUTE_CC2PEN))) {
return true;
}
#endif
return false;
}
void pwmout_enable_pins(pwmout_t *obj, uint8_t enable)
{
if (enable) {
pin_mode(obj->pin, PushPull);
} else {
// TODO_LP return PinMode to the previous state
pin_mode(obj->pin, Disabled);
}
}
void pwmout_enable(pwmout_t *obj, uint8_t enable){
if (enable) {
// Set mode to PWM
PWM_TIMER->CC[obj->channel].CTRL = TIMER_CC_CTRL_MODE_PWM;
} else {
// Set mode to default (== disabled)
PWM_TIMER->CC[obj->channel].CTRL = _TIMER_CC_CTRL_MODE_DEFAULT;
}
}
void pwmout_init(pwmout_t *obj, PinName pin)
{
obj->channel = (PWMName) pinmap_peripheral(pin, PinMap_PWM);
obj->pin = pin;
MBED_ASSERT(obj->channel != (PWMName) NC);
/* Turn on clock */
CMU_ClockEnable(PWM_TIMER_CLOCK, true);
/* Turn on timer */
if(!(PWM_TIMER->STATUS & TIMER_STATUS_RUNNING)) {
TIMER_Init_TypeDef timerInit = TIMER_INIT_DEFAULT;
TIMER_Init(PWM_TIMER, &timerInit);
}
// Set route enable
if(pwmout_channel_route_active(pwmout_get_channel_route(obj->channel))) {
//This channel was already in use
//TODO: gracefully handle this case. mbed_error?
return;
} else {
pwmout_set_channel_route(pwmout_get_channel_route(obj->channel));
sleep_manager_lock_deep_sleep();
pwmout_enable(obj, true);
pwmout_enable_pins(obj, true);
}
// Set route location
#ifdef _TIMER_ROUTELOC0_CC0LOC_LOC0
switch (obj->channel) {
case PWM_CH0:
PWM_TIMER->ROUTELOC0 &= ~_TIMER_ROUTELOC0_CC0LOC_MASK;
PWM_TIMER->ROUTELOC0 |= pinmap_find_function(pin,PinMap_PWM) << _TIMER_ROUTELOC0_CC0LOC_SHIFT;
break;
case PWM_CH1:
PWM_TIMER->ROUTELOC0 &= ~_TIMER_ROUTELOC0_CC1LOC_MASK;
PWM_TIMER->ROUTELOC0 |= pinmap_find_function(pin,PinMap_PWM)<< _TIMER_ROUTELOC0_CC1LOC_SHIFT;
break;
case PWM_CH2:
PWM_TIMER->ROUTELOC0 &= ~_TIMER_ROUTELOC0_CC2LOC_MASK;
PWM_TIMER->ROUTELOC0 |= pinmap_find_function(pin,PinMap_PWM) << _TIMER_ROUTELOC0_CC2LOC_SHIFT;
break;
case PWM_CH3:
PWM_TIMER->ROUTELOC0 &= ~_TIMER_ROUTELOC0_CC3LOC_MASK;
PWM_TIMER->ROUTELOC0 |= pinmap_find_function(pin,PinMap_PWM) << _TIMER_ROUTELOC0_CC3LOC_SHIFT;
break;
default:
MBED_ASSERT(false);
}
#else
// On P1, the route location is statically defined for the entire timer.
PWM_TIMER->ROUTE &= ~_TIMER_ROUTE_LOCATION_MASK;
// Make sure the route location is not overwritten
if(pwmout_all_inactive()) {
PWM_TIMER->ROUTE |= pinmap_find_function(pin,PinMap_PWM) << _TIMER_ROUTE_LOCATION_SHIFT;
} else {
MBED_ASSERT((PWM_TIMER->ROUTE & _TIMER_ROUTE_LOCATION_MASK) == pinmap_find_function(pin,PinMap_PWM) << _TIMER_ROUTE_LOCATION_SHIFT);
}
#endif
// Set default 20ms frequency and 0ms pulse width
pwmout_period(obj, 0.02);
}
void pwmout_free(pwmout_t *obj)
{
if(pwmout_disable_channel_route(pwmout_get_channel_route(obj->channel))) {
//Channel was previously enabled, so do housekeeping
sleep_manager_unlock_deep_sleep();
} else {
//This channel was disabled already
}
pwmout_enable_pins(obj, false);
if(pwmout_all_inactive()) {
//Stop timer
PWM_TIMER->CMD = TIMER_CMD_STOP;
while(PWM_TIMER->STATUS & TIMER_STATUS_RUNNING);
//Disable clock
CMU_ClockEnable(PWM_TIMER_CLOCK, false);
}
}
void pwmout_write(pwmout_t *obj, float value)
{
pwmout_write_channel(obj->channel, value);
}
void pwmout_write_channel(uint32_t channel, float value) {
uint32_t width_cycles = 0;
if (value < 0.0f) {
width_cycles = 0;
} else if (value >= 1.0f) {
width_cycles = PWM_TIMER->TOPB + 1;
} else {
width_cycles = (uint16_t)((float)PWM_TIMER->TOPB * value);
}
TIMER_CompareBufSet(PWM_TIMER, channel, width_cycles);
}
float pwmout_read(pwmout_t *obj)
{
return pwmout_calculate_duty(TIMER_CaptureGet(PWM_TIMER, obj->channel), TIMER_TopGet(PWM_TIMER));
}
float pwmout_calculate_duty(uint32_t width_cycles, uint32_t period_cycles) {
if(width_cycles > period_cycles) {
return 1.0f;
}
else if (width_cycles == 0) {
return 0.0f;
}
else {
return (float) width_cycles / (float) period_cycles;
}
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period(pwmout_t *obj, float seconds)
{
// Find the lowest prescaler divider possible.
// This gives us max resolution for a given period
//The value of the top register if prescaler is set to 0
uint32_t cycles = (uint32_t)REFERENCE_FREQUENCY * seconds;
pwm_prescaler_div = 0;
//The top register is only 16 bits, so we keep dividing till we are below 0xFFFF
while (cycles > 0xFFFF) {
cycles /= 2;
pwm_prescaler_div++;
//Max pwm_prescaler_div supported is 10
if (pwm_prescaler_div > 10) {
pwm_prescaler_div = 10;
cycles = 0xFFFF; //Set it to max possible value;
break;
}
}
//Check if anything changed
if(((PWM_TIMER->CTRL & ~_TIMER_CTRL_PRESC_MASK) == (pwm_prescaler_div << _TIMER_CTRL_PRESC_SHIFT)) && (TIMER_TopGet(PWM_TIMER) == cycles)) return;
//Save previous period for recalculation of duty cycles
uint32_t previous_period_cycles = PWM_TIMER->TOPB;
//Set prescaler
PWM_TIMER->CTRL = (PWM_TIMER->CTRL & ~_TIMER_CTRL_PRESC_MASK) | (pwm_prescaler_div << _TIMER_CTRL_PRESC_SHIFT);
//Set Top Value, which controls the PWM period
TIMER_TopBufSet(PWM_TIMER, cycles);
//For each active channel, re-calculate the compare value
uint32_t channel = 0;
while(pwmout_get_channel_route(channel) != 0) {
if(pwmout_channel_route_active(channel)) {
//recalc and reset compare value
pwmout_write_channel(channel, pwmout_calculate_duty(PWM_TIMER->CC[channel].CCVB, previous_period_cycles));
}
channel++;
}
}
void pwmout_period_ms(pwmout_t *obj, int ms)
{
pwmout_period(obj, ms / 1000.0f);
}
void pwmout_period_us(pwmout_t *obj, int us)
{
pwmout_period(obj, us / 1000000.0f);
}
void pwmout_pulsewidth(pwmout_t *obj, float seconds)
{
uint16_t width_cycles = (uint16_t) (((float) (REFERENCE_FREQUENCY >> pwm_prescaler_div)) * seconds);
TIMER_CompareBufSet(PWM_TIMER, obj->channel, width_cycles);
}
void pwmout_pulsewidth_ms(pwmout_t *obj, int ms)
{
uint16_t width_cycles = (uint16_t) ((REFERENCE_FREQUENCY >> pwm_prescaler_div) * ms) / 1000;
TIMER_CompareBufSet(PWM_TIMER, obj->channel, width_cycles);
}
void pwmout_pulsewidth_us(pwmout_t *obj, int us)
{
uint16_t width_cycles = (uint16_t) ((REFERENCE_FREQUENCY >> pwm_prescaler_div) * us) / 1000000;
TIMER_CompareBufSet(PWM_TIMER, obj->channel, width_cycles);
}
#endif