mbed-os/targets/TARGET_NUVOTON/TARGET_NUC472/i2c_api.c

1034 lines
31 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2015-2016 Nuvoton
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "i2c_api.h"
#if DEVICE_I2C
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "nu_bitutil.h"
#include "mbed_critical.h"
#define NU_I2C_DEBUG 0
#if NU_I2C_DEBUG
struct i2c_s MY_I2C;
struct i2c_s MY_I2C_2;
char MY_I2C_STATUS[64];
int MY_I2C_STATUS_POS = 0;
uint32_t MY_I2C_TIMEOUT;
uint32_t MY_I2C_ELAPSED;
uint32_t MY_I2C_T1;
uint32_t MY_I2C_T2;
#endif
struct nu_i2c_var {
i2c_t * obj;
void (*vec)(void);
};
static void i2c0_vec(void);
static void i2c1_vec(void);
static void i2c2_vec(void);
static void i2c3_vec(void);
static void i2c4_vec(void);
static void i2c_irq(i2c_t *obj);
static void i2c_fsm_reset(i2c_t *obj, uint32_t i2c_ctl);
static void i2c_fsm_tranfini(i2c_t *obj, int lastdatanaked);
static struct nu_i2c_var i2c0_var = {
.obj = NULL,
.vec = i2c0_vec,
};
static struct nu_i2c_var i2c1_var = {
.obj = NULL,
.vec = i2c1_vec,
};
static struct nu_i2c_var i2c2_var = {
.obj = NULL,
.vec = i2c2_vec,
};
static struct nu_i2c_var i2c3_var = {
.obj = NULL,
.vec = i2c3_vec,
};
static struct nu_i2c_var i2c4_var = {
.obj = NULL,
.vec = i2c4_vec,
};
static uint32_t i2c_modinit_mask = 0;
static const struct nu_modinit_s i2c_modinit_tab[] = {
{I2C_0, I2C0_MODULE, 0, 0, I2C0_RST, I2C0_IRQn, &i2c0_var},
{I2C_1, I2C1_MODULE, 0, 0, I2C1_RST, I2C1_IRQn, &i2c1_var},
{I2C_2, I2C2_MODULE, 0, 0, I2C2_RST, I2C2_IRQn, &i2c2_var},
{I2C_3, I2C3_MODULE, 0, 0, I2C3_RST, I2C3_IRQn, &i2c3_var},
{I2C_4, I2C4_MODULE, 0, 0, I2C4_RST, I2C4_IRQn, &i2c4_var},
{NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
};
static int i2c_do_tran(i2c_t *obj, char *buf, int length, int read, int naklastdata);
static int i2c_do_trsn(i2c_t *obj, uint32_t i2c_ctl, int sync);
#define NU_I2C_TIMEOUT_STAT_INT 500000
#define NU_I2C_TIMEOUT_STOP 500000
static int i2c_poll_status_timeout(i2c_t *obj, int (*is_status)(i2c_t *obj), uint32_t timeout);
static int i2c_poll_tran_heatbeat_timeout(i2c_t *obj, uint32_t timeout);
//static int i2c_is_stat_int(i2c_t *obj);
//static int i2c_is_stop_det(i2c_t *obj);
static int i2c_is_trsn_done(i2c_t *obj);
static int i2c_is_tran_started(i2c_t *obj);
static int i2c_addr2data(int address, int read);
#if DEVICE_I2CSLAVE
// Convert mbed address to BSP address.
static int i2c_addr2bspaddr(int address);
#endif // #if DEVICE_I2CSLAVE
static void i2c_enable_int(i2c_t *obj);
static void i2c_disable_int(i2c_t *obj);
static int i2c_set_int(i2c_t *obj, int inten);
#if DEVICE_I2C_ASYNCH
static void i2c_buffer_set(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length);
static void i2c_enable_vector_interrupt(i2c_t *obj, uint32_t handler, int enable);
static void i2c_rollback_vector_interrupt(i2c_t *obj);
#endif
#define TRANCTRL_STARTED (1)
#define TRANCTRL_NAKLASTDATA (1 << 1)
#define TRANCTRL_LASTDATANAKED (1 << 2)
uint32_t us_ticker_read(void);
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
uint32_t i2c_sda = pinmap_peripheral(sda, PinMap_I2C_SDA);
uint32_t i2c_scl = pinmap_peripheral(scl, PinMap_I2C_SCL);
obj->i2c.i2c = (I2CName) pinmap_merge(i2c_sda, i2c_scl);
MBED_ASSERT((int)obj->i2c.i2c != NC);
const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->i2c.i2c);
// Reset this module
SYS_ResetModule(modinit->rsetidx);
// Enable IP clock
CLK_EnableModuleClock(modinit->clkidx);
pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL);
#if DEVICE_I2C_ASYNCH
obj->i2c.dma_usage = DMA_USAGE_NEVER;
obj->i2c.event = 0;
obj->i2c.stop = 0;
obj->i2c.address = 0;
#endif
// NOTE: Setting I2C bus clock to 100 KHz is required. See I2C::I2C in common/I2C.cpp.
I2C_Open((I2C_T *) NU_MODBASE(obj->i2c.i2c), 100000);
// NOTE: INTEN bit and FSM control bits (STA, STO, SI, AA) are packed in one register CTL. We cannot control interrupt through
// INTEN bit without impacting FSM control bits. Use NVIC_EnableIRQ/NVIC_DisableIRQ instead for interrupt control.
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
i2c_base->CTL |= (I2C_CTL_INTEN_Msk | I2C_CTL_I2CEN_Msk);
// Enable sync-moce vector interrupt.
struct nu_i2c_var *var = (struct nu_i2c_var *) modinit->var;
var->obj = obj;
obj->i2c.tran_ctrl = 0;
obj->i2c.stop = 0;
i2c_enable_vector_interrupt(obj, (uint32_t) var->vec, 1);
// Mark this module to be inited.
int i = modinit - i2c_modinit_tab;
i2c_modinit_mask |= 1 << i;
}
int i2c_start(i2c_t *obj)
{
return i2c_do_trsn(obj, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk, 1);
}
int i2c_stop(i2c_t *obj)
{
return i2c_do_trsn(obj, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk, 1);
}
void i2c_frequency(i2c_t *obj, int hz)
{
I2C_SetBusClockFreq((I2C_T *) NU_MODBASE(obj->i2c.i2c), hz);
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
if (i2c_start(obj)) {
i2c_stop(obj);
return I2C_ERROR_BUS_BUSY;
}
if (i2c_byte_write(obj, i2c_addr2data(address, 1)) != 1) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
// Read in bytes
length = i2c_do_tran(obj, data, length, 1, 1);
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
if (i2c_start(obj)) {
i2c_stop(obj);
return I2C_ERROR_BUS_BUSY;
}
if (i2c_byte_write(obj, i2c_addr2data(address, 0)) != 1) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
// Write out bytes
length = i2c_do_tran(obj, (char *) data, length, 0, 1);
if (stop) {
i2c_stop(obj);
}
return length;
}
void i2c_reset(i2c_t *obj)
{
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last)
{
char data = 0;
i2c_do_tran(obj, &data, 1, 1, last);
return data;
}
int i2c_byte_write(i2c_t *obj, int data)
{
char data_[1];
data_[0] = data & 0xFF;
if (i2c_do_tran(obj, data_, 1, 0, 0) == 1 &&
! (obj->i2c.tran_ctrl & TRANCTRL_LASTDATANAKED)) {
return 1;
}
else {
return 0;
}
}
#if DEVICE_I2CSLAVE
// See I2CSlave.h
#define NoData 0 // the slave has not been addressed
#define ReadAddressed 1 // the master has requested a read from this slave (slave = transmitter)
#define WriteGeneral 2 // the master is writing to all slave
#define WriteAddressed 3 // the master is writing to this slave (slave = receiver)
void i2c_slave_mode(i2c_t *obj, int enable_slave)
{
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
i2c_disable_int(obj);
obj->i2c.slaveaddr_state = NoData;
// Switch to not addressed mode
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk);
i2c_enable_int(obj);
}
int i2c_slave_receive(i2c_t *obj)
{
int slaveaddr_state;
i2c_disable_int(obj);
slaveaddr_state = obj->i2c.slaveaddr_state;
i2c_enable_int(obj);
return slaveaddr_state;
}
int i2c_slave_read(i2c_t *obj, char *data, int length)
{
return i2c_do_tran(obj, data, length, 1, 1);
}
int i2c_slave_write(i2c_t *obj, const char *data, int length)
{
return i2c_do_tran(obj, (char *) data, length, 0, 1);
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
{
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
i2c_disable_int(obj);
I2C_SetSlaveAddr(i2c_base, 0, i2c_addr2bspaddr(address), I2C_GCMODE_ENABLE);
i2c_enable_int(obj);
}
static int i2c_addr2bspaddr(int address)
{
return (address >> 1);
}
#endif // #if DEVICE_I2CSLAVE
static void i2c_enable_int(i2c_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab);
core_util_critical_section_enter();
// Enable I2C interrupt
NVIC_EnableIRQ(modinit->irq_n);
obj->i2c.inten = 1;
core_util_critical_section_exit();
}
static void i2c_disable_int(i2c_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab);
core_util_critical_section_enter();
// Disable I2C interrupt
NVIC_DisableIRQ(modinit->irq_n);
obj->i2c.inten = 0;
core_util_critical_section_exit();
}
static int i2c_set_int(i2c_t *obj, int inten)
{
int inten_back;
core_util_critical_section_enter();
inten_back = obj->i2c.inten;
core_util_critical_section_exit();
if (inten) {
i2c_enable_int(obj);
}
else {
i2c_disable_int(obj);
}
return inten_back;
}
static int i2c_do_tran(i2c_t *obj, char *buf, int length, int read, int naklastdata)
{
if (! buf || ! length) {
return 0;
}
int tran_len = 0;
i2c_disable_int(obj);
obj->i2c.tran_ctrl = naklastdata ? (TRANCTRL_STARTED | TRANCTRL_NAKLASTDATA) : TRANCTRL_STARTED;
obj->i2c.tran_beg = buf;
obj->i2c.tran_pos = buf;
obj->i2c.tran_end = buf + length;
i2c_enable_int(obj);
if (i2c_poll_tran_heatbeat_timeout(obj, NU_I2C_TIMEOUT_STAT_INT)) {
#if NU_I2C_DEBUG
MY_I2C_2 = obj->i2c;
while (1);
#endif
}
else {
i2c_disable_int(obj);
tran_len = obj->i2c.tran_pos - obj->i2c.tran_beg;
obj->i2c.tran_beg = NULL;
obj->i2c.tran_pos = NULL;
obj->i2c.tran_end = NULL;
i2c_enable_int(obj);
}
return tran_len;
}
static int i2c_do_trsn(i2c_t *obj, uint32_t i2c_ctl, int sync)
{
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
int err = 0;
i2c_disable_int(obj);
if (i2c_poll_status_timeout(obj, i2c_is_trsn_done, NU_I2C_TIMEOUT_STAT_INT)) {
err = I2C_ERROR_BUS_BUSY;
#if NU_I2C_DEBUG
MY_I2C_2 = obj->i2c;
while (1);
#endif
}
else {
#if 1
// NOTE: Avoid duplicate Start/Stop. Otherwise, we may meet strange error.
uint32_t status = I2C_GET_STATUS(i2c_base);
switch (status) {
case 0x08: // Start
case 0x10: // Master Repeat Start
if (i2c_ctl & I2C_CTL_STA_Msk) {
return 0;
}
else {
break;
}
case 0xF8: // Bus Released
if (i2c_ctl & (I2C_CTL_STA_Msk | I2C_CTL_STO_Msk) == I2C_CTL_STO_Msk) {
return 0;
}
else {
break;
}
}
#endif
I2C_SET_CONTROL_REG(i2c_base, i2c_ctl);
if (sync && i2c_poll_status_timeout(obj, i2c_is_trsn_done, NU_I2C_TIMEOUT_STAT_INT)) {
err = I2C_ERROR_BUS_BUSY;
#if NU_I2C_DEBUG
MY_I2C_2 = obj->i2c;
while (1);
#endif
}
}
i2c_enable_int(obj);
return err;
}
static int i2c_poll_status_timeout(i2c_t *obj, int (*is_status)(i2c_t *obj), uint32_t timeout)
{
uint32_t t1, t2, elapsed = 0;
int status_assert = 0;
t1 = us_ticker_read();
while (1) {
status_assert = is_status(obj);
if (status_assert) {
break;
}
t2 = us_ticker_read();
elapsed = (t2 > t1) ? (t2 - t1) : ((uint64_t) t2 + 0xFFFFFFFF - t1 + 1);
if (elapsed >= timeout) {
#if NU_I2C_DEBUG
MY_I2C_T1 = t1;
MY_I2C_T2 = t2;
MY_I2C_ELAPSED = elapsed;
MY_I2C_TIMEOUT = timeout;
MY_I2C_2 = obj->i2c;
while (1);
#endif
break;
}
}
return (elapsed >= timeout);
}
static int i2c_poll_tran_heatbeat_timeout(i2c_t *obj, uint32_t timeout)
{
uint32_t t1, t2, elapsed = 0;
int tran_started;
char *tran_pos = NULL;
char *tran_pos2 = NULL;
i2c_disable_int(obj);
tran_pos = obj->i2c.tran_pos;
i2c_enable_int(obj);
t1 = us_ticker_read();
while (1) {
i2c_disable_int(obj);
tran_started = i2c_is_tran_started(obj);
i2c_enable_int(obj);
if (! tran_started) { // Transfer completed or stopped
break;
}
i2c_disable_int(obj);
tran_pos2 = obj->i2c.tran_pos;
i2c_enable_int(obj);
t2 = us_ticker_read();
if (tran_pos2 != tran_pos) { // Transfer on-going
t1 = t2;
tran_pos = tran_pos2;
continue;
}
elapsed = (t2 > t1) ? (t2 - t1) : ((uint64_t) t2 + 0xFFFFFFFF - t1 + 1);
if (elapsed >= timeout) { // Transfer idle
#if NU_I2C_DEBUG
MY_I2C = obj->i2c;
MY_I2C_T1 = t1;
MY_I2C_T2 = t2;
MY_I2C_ELAPSED = elapsed;
MY_I2C_TIMEOUT = timeout;
MY_I2C_2 = obj->i2c;
while (1);
#endif
break;
}
}
return (elapsed >= timeout);
}
#if 0
static int i2c_is_stat_int(i2c_t *obj)
{
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
return !! (i2c_base->CTL & I2C_CTL_SI_Msk);
}
static int i2c_is_stop_det(i2c_t *obj)
{
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
return ! (i2c_base->CTL & I2C_CTL_STO_Msk);
}
#endif
static int i2c_is_trsn_done(i2c_t *obj)
{
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
int i2c_int;
uint32_t status;
int inten_back;
inten_back = i2c_set_int(obj, 0);
i2c_int = !! (i2c_base->CTL & I2C_CTL_SI_Msk);
status = I2C_GET_STATUS(i2c_base);
i2c_set_int(obj, inten_back);
return (i2c_int || status == 0xF8);
}
static int i2c_is_tran_started(i2c_t *obj)
{
int started;
int inten_back;
inten_back = i2c_set_int(obj, 0);
started = !! (obj->i2c.tran_ctrl & TRANCTRL_STARTED);
i2c_set_int(obj, inten_back);
return started;
}
static int i2c_addr2data(int address, int read)
{
return read ? (address | 1) : (address & 0xFE);
}
static void i2c0_vec(void)
{
i2c_irq(i2c0_var.obj);
}
static void i2c1_vec(void)
{
i2c_irq(i2c1_var.obj);
}
static void i2c2_vec(void)
{
i2c_irq(i2c2_var.obj);
}
static void i2c3_vec(void)
{
i2c_irq(i2c3_var.obj);
}
static void i2c4_vec(void)
{
i2c_irq(i2c4_var.obj);
}
static void i2c_irq(i2c_t *obj)
{
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
uint32_t status;
if (I2C_GET_TIMEOUT_FLAG(i2c_base)) {
I2C_ClearTimeoutFlag(i2c_base);
return;
}
status = I2C_GET_STATUS(i2c_base);
#if NU_I2C_DEBUG
if (MY_I2C_STATUS_POS < (sizeof (MY_I2C_STATUS) / sizeof (MY_I2C_STATUS[0]))) {
MY_I2C_STATUS[MY_I2C_STATUS_POS ++] = status;
}
else {
memset(MY_I2C_STATUS, 0x00, sizeof (MY_I2C_STATUS));
MY_I2C_STATUS_POS = 0;
}
#endif
switch (status) {
// Master Transmit
case 0x28: // Master Transmit Data ACK
case 0x18: // Master Transmit Address ACK
case 0x08: // Start
case 0x10: // Master Repeat Start
if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) {
if (obj->i2c.tran_pos < obj->i2c.tran_end) {
I2C_SET_DATA(i2c_base, *obj->i2c.tran_pos ++);
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk);
}
else {
i2c_fsm_tranfini(obj, 0);
}
}
else {
i2c_disable_int(obj);
}
break;
case 0x30: // Master Transmit Data NACK
i2c_fsm_tranfini(obj, 1);
break;
case 0x20: // Master Transmit Address NACK
i2c_fsm_tranfini(obj, 1);
break;
case 0x38: // Master Arbitration Lost
i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk);
break;
case 0x48: // Master Receive Address NACK
i2c_fsm_tranfini(obj, 1);
break;
case 0x40: // Master Receive Address ACK
case 0x50: // Master Receive Data ACK
case 0x58: // Master Receive Data NACK
if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) {
if (obj->i2c.tran_pos < obj->i2c.tran_end) {
if (status == 0x50 || status == 0x58) {
*obj->i2c.tran_pos ++ = I2C_GET_DATA(i2c_base);
}
if (status == 0x58) {
#if NU_I2C_DEBUG
if (obj->i2c.tran_pos != obj->i2c.tran_end) {
MY_I2C = obj->i2c;
while (1);
}
#endif
i2c_fsm_tranfini(obj, 1);
}
else {
uint32_t i2c_ctl = I2C_CTL_SI_Msk | I2C_CTL_AA_Msk;
if ((obj->i2c.tran_end - obj->i2c.tran_pos) == 1 &&
obj->i2c.tran_ctrl & TRANCTRL_NAKLASTDATA) {
// Last data
i2c_ctl &= ~I2C_CTL_AA_Msk;
}
I2C_SET_CONTROL_REG(i2c_base, i2c_ctl);
}
}
else {
obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED;
i2c_disable_int(obj);
break;
}
}
else {
i2c_disable_int(obj);
}
break;
//case 0x00: // Bus error
// Slave Transmit
case 0xB8: // Slave Transmit Data ACK
case 0xA8: // Slave Transmit Address ACK
case 0xB0: // Slave Transmit Arbitration Lost
if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) {
if (obj->i2c.tran_pos < obj->i2c.tran_end) {
uint32_t i2c_ctl = I2C_CTL_SI_Msk | I2C_CTL_AA_Msk;
I2C_SET_DATA(i2c_base, *obj->i2c.tran_pos ++);
if (obj->i2c.tran_pos == obj->i2c.tran_end &&
obj->i2c.tran_ctrl & TRANCTRL_NAKLASTDATA) {
// Last data
i2c_ctl &= ~I2C_CTL_AA_Msk;
}
I2C_SET_CONTROL_REG(i2c_base, i2c_ctl);
}
else {
obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED;
i2c_disable_int(obj);
break;
}
}
else {
i2c_disable_int(obj);
}
obj->i2c.slaveaddr_state = ReadAddressed;
break;
//case 0xA0: // Slave Transmit Repeat Start or Stop
case 0xC0: // Slave Transmit Data NACK
case 0xC8: // Slave Transmit Last Data ACK
obj->i2c.slaveaddr_state = NoData;
i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk);
break;
// Slave Receive
case 0x80: // Slave Receive Data ACK
case 0x88: // Slave Receive Data NACK
case 0x60: // Slave Receive Address ACK
case 0x68: // Slave Receive Arbitration Lost
obj->i2c.slaveaddr_state = WriteAddressed;
if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) {
if (obj->i2c.tran_pos < obj->i2c.tran_end) {
if (status == 0x80 || status == 0x88) {
*obj->i2c.tran_pos ++ = I2C_GET_DATA(i2c_base);
}
if (status == 0x88) {
#if NU_I2C_DEBUG
if (obj->i2c.tran_pos != obj->i2c.tran_end) {
MY_I2C = obj->i2c;
while (1);
}
#endif
obj->i2c.slaveaddr_state = NoData;
i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk);
}
else {
uint32_t i2c_ctl = I2C_CTL_SI_Msk | I2C_CTL_AA_Msk;
if ((obj->i2c.tran_end - obj->i2c.tran_pos) == 1 &&
obj->i2c.tran_ctrl & TRANCTRL_NAKLASTDATA) {
// Last data
i2c_ctl &= ~I2C_CTL_AA_Msk;
}
I2C_SET_CONTROL_REG(i2c_base, i2c_ctl);
}
}
else {
obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED;
i2c_disable_int(obj);
break;
}
}
else {
i2c_disable_int(obj);
}
break;
//case 0xA0: // Slave Receive Repeat Start or Stop
// GC mode
//case 0xA0: // GC mode Repeat Start or Stop
case 0x90: // GC mode Data ACK
case 0x98: // GC mode Data NACK
case 0x70: // GC mode Address ACK
case 0x78: // GC mode Arbitration Lost
obj->i2c.slaveaddr_state = WriteAddressed;
if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) {
if (obj->i2c.tran_pos < obj->i2c.tran_end) {
if (status == 0x90 || status == 0x98) {
*obj->i2c.tran_pos ++ = I2C_GET_DATA(i2c_base);
}
if (status == 0x98) {
#if NU_I2C_DEBUG
if (obj->i2c.tran_pos != obj->i2c.tran_end) {
MY_I2C = obj->i2c;
while (1);
}
#endif
obj->i2c.slaveaddr_state = NoData;
i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk);
}
else {
uint32_t i2c_ctl = I2C_CTL_SI_Msk | I2C_CTL_AA_Msk;
if ((obj->i2c.tran_end - obj->i2c.tran_pos) == 1 &&
obj->i2c.tran_ctrl & TRANCTRL_NAKLASTDATA) {
// Last data
i2c_ctl &= ~I2C_CTL_AA_Msk;
}
I2C_SET_CONTROL_REG(i2c_base, i2c_ctl);
}
}
else {
obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED;
i2c_disable_int(obj);
break;
}
}
else {
i2c_disable_int(obj);
}
break;
case 0xF8: // Bus Released
break;
default:
i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk);
}
}
static void i2c_fsm_reset(i2c_t *obj, uint32_t i2c_ctl)
{
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
obj->i2c.stop = 0;
obj->i2c.tran_ctrl = 0;
I2C_SET_CONTROL_REG(i2c_base, i2c_ctl);
obj->i2c.slaveaddr_state = NoData;
}
static void i2c_fsm_tranfini(i2c_t *obj, int lastdatanaked)
{
if (lastdatanaked) {
obj->i2c.tran_ctrl |= TRANCTRL_LASTDATANAKED;
}
obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED;
i2c_disable_int(obj);
}
#if DEVICE_I2C_ASYNCH
void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint)
{
// NOTE: NUC472 I2C only supports 7-bit slave address. The mbed I2C address passed in is shifted left by 1 bit (7-bit addr << 1).
MBED_ASSERT((address & 0xFFFFFF00) == 0);
// NOTE: First transmit and then receive.
(void) hint;
obj->i2c.dma_usage = DMA_USAGE_NEVER;
obj->i2c.stop = stop;
obj->i2c.address = address;
obj->i2c.event = event;
i2c_buffer_set(obj, tx, tx_length, rx, rx_length);
//I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
i2c_enable_vector_interrupt(obj, handler, 1);
i2c_start(obj);
}
uint32_t i2c_irq_handler_asynch(i2c_t *obj)
{
int event = 0;
I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c);
uint32_t status = I2C_GET_STATUS(i2c_base);
switch (status) {
case 0x08: // Start
case 0x10: {// Master Repeat Start
if (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) {
I2C_SET_DATA(i2c_base, (i2c_addr2data(obj->i2c.address, 0)));
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk);
}
else if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) {
I2C_SET_DATA(i2c_base, (i2c_addr2data(obj->i2c.address, 1)));
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk);
}
else {
event = I2C_EVENT_TRANSFER_COMPLETE;
if (obj->i2c.stop) {
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk);
}
}
break;
}
case 0x18: // Master Transmit Address ACK
case 0x28: // Master Transmit Data ACK
if (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) {
uint8_t *tx = (uint8_t *)obj->tx_buff.buffer;
I2C_SET_DATA(i2c_base, tx[obj->tx_buff.pos ++]);
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk);
}
else if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) {
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk);
}
else {
event = I2C_EVENT_TRANSFER_COMPLETE;
if (obj->i2c.stop) {
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk);
}
}
break;
case 0x20: // Master Transmit Address NACK
event = I2C_EVENT_ERROR_NO_SLAVE;
if (obj->i2c.stop) {
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk);
}
break;
case 0x30: // Master Transmit Data NACK
if (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) {
event = I2C_EVENT_TRANSFER_EARLY_NACK;
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk);
}
else if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) {
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk);
}
else {
event = I2C_EVENT_TRANSFER_COMPLETE;
if (obj->i2c.stop) {
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk);
}
}
break;
case 0x38: // Master Arbitration Lost
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk); // Enter not addressed SLV mode
event = I2C_EVENT_ERROR;
break;
case 0x50: // Master Receive Data ACK
if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) {
uint8_t *rx = (uint8_t *) obj->rx_buff.buffer;
rx[obj->rx_buff.pos ++] = I2C_GET_DATA(((I2C_T *) NU_MODBASE(obj->i2c.i2c)));
}
case 0x40: // Master Receive Address ACK
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk | ((obj->rx_buff.pos != obj->rx_buff.length - 1) ? I2C_CTL_AA_Msk : 0));
break;
case 0x48: // Master Receive Address NACK
event = I2C_EVENT_ERROR_NO_SLAVE;
if (obj->i2c.stop) {
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk);
}
break;
case 0x58: // Master Receive Data NACK
if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) {
uint8_t *rx = (uint8_t *) obj->rx_buff.buffer;
rx[obj->rx_buff.pos ++] = I2C_GET_DATA(((I2C_T *) NU_MODBASE(obj->i2c.i2c)));
}
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk);
break;
case 0x00: // Bus error
event = I2C_EVENT_ERROR;
i2c_reset(obj);
break;
default:
event = I2C_EVENT_ERROR;
if (obj->i2c.stop) {
I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk);
}
}
if (event) {
i2c_rollback_vector_interrupt(obj);
}
return (event & obj->i2c.event);
}
uint8_t i2c_active(i2c_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->i2c.i2c);
// Vector will be changed for async transfer. Use it to judge if async transfer is on-going.
uint32_t vec = NVIC_GetVector(modinit->irq_n);
struct nu_i2c_var *var = (struct nu_i2c_var *) modinit->var;
return (vec && vec != (uint32_t) var->vec);
}
void i2c_abort_asynch(i2c_t *obj)
{
i2c_rollback_vector_interrupt(obj);
i2c_stop(obj);
}
static void i2c_buffer_set(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length)
{
obj->tx_buff.buffer = (void *) tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
}
static void i2c_enable_vector_interrupt(i2c_t *obj, uint32_t handler, int enable)
{
const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->i2c.i2c);
if (enable) {
NVIC_SetVector(modinit->irq_n, handler);
i2c_enable_int(obj);
}
else {
i2c_disable_int(obj);
}
}
static void i2c_rollback_vector_interrupt(i2c_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->i2c.i2c);
struct nu_i2c_var *var = (struct nu_i2c_var *) modinit->var;
i2c_enable_vector_interrupt(obj, (uint32_t) var->vec, 1);
}
#endif
#endif