mirror of https://github.com/ARMmbed/mbed-os.git
				
				
				
			
		
			
				
	
	
		
			1916 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
			
		
		
	
	
			1916 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
/* mbed Microcontroller Library
 | 
						|
 *******************************************************************************
 | 
						|
 * Copyright (c) 2015, STMicroelectronics
 | 
						|
 * All rights reserved.
 | 
						|
 * SPDX-License-Identifier: BSD-3-Clause
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions are met:
 | 
						|
 *
 | 
						|
 * 1. Redistributions of source code must retain the above copyright notice,
 | 
						|
 *    this list of conditions and the following disclaimer.
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 | 
						|
 *    this list of conditions and the following disclaimer in the documentation
 | 
						|
 *    and/or other materials provided with the distribution.
 | 
						|
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 | 
						|
 *    may be used to endorse or promote products derived from this software
 | 
						|
 *    without specific prior written permission.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | 
						|
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | 
						|
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | 
						|
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | 
						|
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 *******************************************************************************
 | 
						|
 */
 | 
						|
#include "mbed_assert.h"
 | 
						|
#include "mbed_error.h"
 | 
						|
#include "mbed_debug.h"
 | 
						|
#include "mbed_critical.h"
 | 
						|
#include "mbed_wait_api.h"
 | 
						|
#include "spi_api.h"
 | 
						|
 | 
						|
#if DEVICE_SPI
 | 
						|
#include <stdbool.h>
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
#include "cmsis.h"
 | 
						|
#include "pinmap.h"
 | 
						|
#include "PeripheralPins.h"
 | 
						|
#include "spi_device.h"
 | 
						|
#include "stm_spi_api.h"
 | 
						|
 | 
						|
#ifdef STM32_SPI_CAPABILITY_DMA
 | 
						|
#include "stm_dma_info.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if DEVICE_SPI_ASYNCH
 | 
						|
#define SPI_INST(obj)    ((SPI_TypeDef *)(obj->spi.spi))
 | 
						|
#else
 | 
						|
#define SPI_INST(obj)    ((SPI_TypeDef *)(obj->spi))
 | 
						|
#endif
 | 
						|
 | 
						|
#if DEVICE_SPI_ASYNCH
 | 
						|
#define SPI_S(obj)    (( struct spi_s *)(&(obj->spi)))
 | 
						|
#else
 | 
						|
#define SPI_S(obj)    (( struct spi_s *)(obj))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef DEBUG_STDIO
 | 
						|
#   define DEBUG_STDIO 0
 | 
						|
#endif
 | 
						|
 | 
						|
#if DEBUG_STDIO
 | 
						|
#   include <stdio.h>
 | 
						|
#   define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0)
 | 
						|
#else
 | 
						|
#   define DEBUG_PRINTF(...) {}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Consider 10ms as the default timeout for sending/receving 1 byte */
 | 
						|
#define TIMEOUT_1_BYTE 10
 | 
						|
 | 
						|
#if defined(SPI_FLAG_FRLVL) // STM32F0 STM32F3 STM32F7 STM32L4
 | 
						|
#if defined(STM32U5) || defined(STM32H5)
 | 
						|
extern HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(const SPI_HandleTypeDef *hspi);
 | 
						|
#else
 | 
						|
extern HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(SPI_HandleTypeDef *hspi);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(SPI_DATASIZE_17BIT) || defined(SPI_DATASIZE_18BIT) || defined(SPI_DATASIZE_19BIT) || defined(SPI_DATASIZE_20BIT) || \
 | 
						|
    defined(SPI_DATASIZE_21BIT) || defined(SPI_DATASIZE_22BIT) || defined(SPI_DATASIZE_23BIT) || defined(SPI_DATASIZE_24BIT) || \
 | 
						|
    defined(SPI_DATASIZE_25BIT) || defined(SPI_DATASIZE_26BIT) || defined(SPI_DATASIZE_27BIT) || defined(SPI_DATASIZE_28BIT) || \
 | 
						|
    defined(SPI_DATASIZE_29BIT) || defined(SPI_DATASIZE_30BIT) || defined(SPI_DATASIZE_31BIT) || defined(SPI_DATASIZE_32BIT)
 | 
						|
 | 
						|
#define HAS_32BIT_SPI_TRANSFERS 1
 | 
						|
#endif // SPI_DATASIZE_X
 | 
						|
 | 
						|
// SPI IRQ handlers
 | 
						|
#if defined SPI1_BASE
 | 
						|
static SPI_HandleTypeDef * spi1Handle; // Handle of whatever SPI structure is used for SPI1
 | 
						|
void SPI1_IRQHandler()
 | 
						|
{
 | 
						|
    HAL_SPI_IRQHandler(spi1Handle);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI2_BASE
 | 
						|
static SPI_HandleTypeDef * spi2Handle; // Handle of whatever SPI structure is used for SPI2
 | 
						|
void SPI2_IRQHandler()
 | 
						|
{
 | 
						|
    HAL_SPI_IRQHandler(spi2Handle);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI3_BASE
 | 
						|
static SPI_HandleTypeDef * spi3Handle; // Handle of whatever SPI structure is used for SPI3
 | 
						|
void SPI3_IRQHandler()
 | 
						|
{
 | 
						|
    HAL_SPI_IRQHandler(spi3Handle);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI4_BASE
 | 
						|
static SPI_HandleTypeDef * spi4Handle; // Handle of whatever SPI structure is used for SPI4
 | 
						|
void SPI4_IRQHandler()
 | 
						|
{
 | 
						|
    HAL_SPI_IRQHandler(spi4Handle);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI5_BASE
 | 
						|
static SPI_HandleTypeDef * spi5Handle; // Handle of whatever SPI structure is used for SPI5
 | 
						|
void SPI5_IRQHandler()
 | 
						|
{
 | 
						|
    HAL_SPI_IRQHandler(spi5Handle);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI6_BASE
 | 
						|
static SPI_HandleTypeDef * spi6Handle; // Handle of whatever SPI structure is used for SPI6
 | 
						|
void SPI6_IRQHandler()
 | 
						|
{
 | 
						|
    HAL_SPI_IRQHandler(spi6Handle);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * Flush RX FIFO/input register of SPI interface and clear overrun flag.
 | 
						|
 */
 | 
						|
static inline void spi_flush_rx(spi_t *obj)
 | 
						|
{
 | 
						|
#if defined(SPI_FLAG_FRLVL)
 | 
						|
    HAL_SPIEx_FlushRxFifo(&(SPI_S(obj)->handle));
 | 
						|
#endif
 | 
						|
    LL_SPI_ClearFlag_OVR(SPI_INST(obj));
 | 
						|
}
 | 
						|
 | 
						|
// Store the spi_s * inside an SPI handle, for later retrieval in callbacks
 | 
						|
static inline void store_spis_pointer(SPI_HandleTypeDef * spiHandle, struct spi_s * spis) {
 | 
						|
    // Annoyingly, STM neglected to provide any sort of "user data" pointer inside SPI_HandleTypeDef for use
 | 
						|
    // in callbacks.  However, there are some variables in the Init struct that are never accessed after HAL_SPI_Init().
 | 
						|
    // So, we can reuse those to store our pointer.
 | 
						|
    spiHandle->Init.TIMode = (uint32_t)spis;
 | 
						|
}
 | 
						|
 | 
						|
// Get spi_s * from SPI_HandleTypeDef
 | 
						|
static inline struct spi_s * get_spis_pointer(SPI_HandleTypeDef * spiHandle) {
 | 
						|
    return (struct spi_s *) spiHandle->Init.TIMode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void spi_get_capabilities(PinName ssel, bool slave, spi_capabilities_t *cap)
 | 
						|
{
 | 
						|
    if (slave) {
 | 
						|
        cap->minimum_frequency = 200000;            // 200 kHz
 | 
						|
        cap->maximum_frequency = 2000000;           // 2 MHz
 | 
						|
        cap->word_length = 0x00008080;              // 8 and 16 bit symbols
 | 
						|
        cap->support_slave_mode = false;            // to be determined later based on ssel
 | 
						|
        cap->hw_cs_handle = false;                  // irrelevant in slave mode
 | 
						|
        cap->slave_delay_between_symbols_ns = 2500; // 2.5 us
 | 
						|
        cap->clk_modes = 0x0f;                      // all clock modes
 | 
						|
        cap->tx_rx_buffers_equal_length = false;    // rx/tx buffers can have different sizes
 | 
						|
#if DEVICE_SPI_ASYNCH
 | 
						|
        cap->async_mode = true;
 | 
						|
#else
 | 
						|
        cap->async_mode = false;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        cap->minimum_frequency = 200000;          // 200 kHz
 | 
						|
        cap->maximum_frequency = 2000000;         // 2 MHz
 | 
						|
        cap->word_length = STM32_SPI_CAPABILITY_WORD_LENGTH;            // Defined in spi_device.h
 | 
						|
        cap->support_slave_mode = false;          // to be determined later based on ssel
 | 
						|
        cap->hw_cs_handle = false;                // to be determined later based on ssel
 | 
						|
        cap->slave_delay_between_symbols_ns = 0;  // irrelevant in master mode
 | 
						|
        cap->clk_modes = 0x0f;                    // all clock modes
 | 
						|
        cap->tx_rx_buffers_equal_length = false;  // rx/tx buffers can have different sizes
 | 
						|
#if DEVICE_SPI_ASYNCH
 | 
						|
        cap->async_mode = true;
 | 
						|
#else
 | 
						|
        cap->async_mode = false;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    // check if given ssel pin is in the cs pinmap
 | 
						|
    const PinMap *cs_pins = spi_master_cs_pinmap();
 | 
						|
    while (cs_pins->pin != NC) {
 | 
						|
        if (cs_pins->pin == ssel) {
 | 
						|
#if DEVICE_SPISLAVE
 | 
						|
            cap->support_slave_mode = true;
 | 
						|
#endif
 | 
						|
            cap->hw_cs_handle = true;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        cs_pins++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void init_spi(spi_t *obj)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    __HAL_SPI_DISABLE(handle);
 | 
						|
 | 
						|
    // Reset flag used by store_spis_pointer()
 | 
						|
    handle->Init.TIMode = SPI_TIMODE_DISABLE;
 | 
						|
 | 
						|
    DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance);
 | 
						|
    if (HAL_SPI_Init(handle) != HAL_OK) {
 | 
						|
        error("Cannot initialize SPI");
 | 
						|
    }
 | 
						|
 | 
						|
    store_spis_pointer(handle, spiobj);
 | 
						|
 | 
						|
    /* In some cases after SPI object re-creation SPI overrun flag may not
 | 
						|
     * be cleared, so clear RX data explicitly to prevent any transmissions errors */
 | 
						|
    spi_flush_rx(obj);
 | 
						|
    /* In case of standard 4 wires SPI,PI can be kept enabled all time
 | 
						|
     * and SCK will only be generated during the write operations. But in case
 | 
						|
     * of 3 wires, it should be only enabled during rd/wr unitary operations,
 | 
						|
     * which is handled inside STM32 HAL layer.
 | 
						|
     */
 | 
						|
    if (handle->Init.Direction  == SPI_DIRECTION_2LINES) {
 | 
						|
        __HAL_SPI_ENABLE(handle);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
SPIName spi_get_peripheral_name(PinName mosi, PinName miso, PinName sclk)
 | 
						|
{
 | 
						|
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
 | 
						|
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
 | 
						|
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
 | 
						|
 | 
						|
    SPIName spi_per;
 | 
						|
 | 
						|
    // MISO or MOSI may be not connected
 | 
						|
    if (miso == NC) {
 | 
						|
        spi_per = (SPIName)pinmap_merge(spi_mosi, spi_sclk);
 | 
						|
    } else if (mosi == NC) {
 | 
						|
        spi_per = (SPIName)pinmap_merge(spi_miso, spi_sclk);
 | 
						|
    } else {
 | 
						|
        SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
 | 
						|
        spi_per = (SPIName)pinmap_merge(spi_data, spi_sclk);
 | 
						|
    }
 | 
						|
 | 
						|
    return spi_per;
 | 
						|
}
 | 
						|
 | 
						|
#if STATIC_PINMAP_READY
 | 
						|
#define SPI_INIT_DIRECT spi_init_direct
 | 
						|
void spi_init_direct(spi_t *obj, const spi_pinmap_t *pinmap)
 | 
						|
#else
 | 
						|
#define SPI_INIT_DIRECT _spi_init_direct
 | 
						|
static void _spi_init_direct(spi_t *obj, const spi_pinmap_t *pinmap)
 | 
						|
#endif
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    spiobj->spi = (SPIName)pinmap->peripheral;
 | 
						|
    MBED_ASSERT(spiobj->spi != (SPIName)NC);
 | 
						|
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
#ifdef DEVICE_SPI_ASYNCH
 | 
						|
    spiobj->driverCallback = NULL;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI1_BASE
 | 
						|
    // Enable SPI clock
 | 
						|
    if (spiobj->spi == SPI_1) {
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI1;
 | 
						|
#if defined (RCC_SPI123CLKSOURCE_PLL)
 | 
						|
        PeriphClkInit.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL;
 | 
						|
#elif defined (RCC_SPI1CLKSOURCE_SYSCLK)
 | 
						|
        PeriphClkInit.Spi1ClockSelection = RCC_SPI1CLKSOURCE_SYSCLK;   
 | 
						|
#else
 | 
						|
        PeriphClkInit.Spi1ClockSelection = RCC_SPI1CLKSOURCE_PLL1Q;
 | 
						|
#endif
 | 
						|
        if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
 | 
						|
            error("HAL_RCCEx_PeriphCLKConfig\n");
 | 
						|
        }
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
        __HAL_RCC_SPI1_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI1_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI1_CLK_ENABLE();
 | 
						|
        spiobj->spiIRQ = SPI1_IRQn;
 | 
						|
        spiobj->spiIndex = 1;
 | 
						|
        spi1Handle = &spiobj->handle;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI2_BASE
 | 
						|
    if (spiobj->spi == SPI_2) {
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI2;
 | 
						|
#if defined (RCC_SPI123CLKSOURCE_PLL)
 | 
						|
        PeriphClkInit.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL;
 | 
						|
#elif defined (RCC_SPI2CLKSOURCE_SYSCLK)
 | 
						|
        PeriphClkInit.Spi2ClockSelection = RCC_SPI2CLKSOURCE_SYSCLK;
 | 
						|
#else
 | 
						|
        PeriphClkInit.Spi2ClockSelection = RCC_SPI2CLKSOURCE_PLL1Q; 
 | 
						|
#endif
 | 
						|
        if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
 | 
						|
            error("HAL_RCCEx_PeriphCLKConfig\n");
 | 
						|
        }
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
        __HAL_RCC_SPI2_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI2_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI2_CLK_ENABLE();
 | 
						|
        spiobj->spiIRQ = SPI2_IRQn;
 | 
						|
        spiobj->spiIndex = 2;
 | 
						|
        spi2Handle = &spiobj->handle;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI3_BASE
 | 
						|
    if (spiobj->spi == SPI_3) {
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI3;
 | 
						|
#if defined (RCC_SPI123CLKSOURCE_PLL)
 | 
						|
        PeriphClkInit.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL;
 | 
						|
#elif defined (RCC_SPI2CLKSOURCE_SYSCLK)
 | 
						|
        PeriphClkInit.Spi3ClockSelection = RCC_SPI3CLKSOURCE_SYSCLK;
 | 
						|
#else
 | 
						|
        PeriphClkInit.Spi3ClockSelection = RCC_SPI3CLKSOURCE_PLL1Q;
 | 
						|
#endif
 | 
						|
        if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
 | 
						|
            error("HAL_RCCEx_PeriphCLKConfig\n");
 | 
						|
        }
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
        __HAL_RCC_SPI3_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI3_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI3_CLK_ENABLE();
 | 
						|
        spiobj->spiIRQ = SPI3_IRQn;
 | 
						|
        spiobj->spiIndex = 3;
 | 
						|
        spi3Handle = &spiobj->handle;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI4_BASE
 | 
						|
    if (spiobj->spi == SPI_4) {
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI4;
 | 
						|
#if defined  RCC_SPI45CLKSOURCE_PCLK1
 | 
						|
        PeriphClkInit.Spi45ClockSelection = RCC_SPI45CLKSOURCE_PCLK1;
 | 
						|
#else
 | 
						|
        PeriphClkInit.Spi4ClockSelection = RCC_SPI4CLKSOURCE_PCLK2;
 | 
						|
#endif
 | 
						|
        if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
 | 
						|
            error("HAL_RCCEx_PeriphCLKConfig\n");
 | 
						|
        }
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
        __HAL_RCC_SPI4_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI4_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI4_CLK_ENABLE();
 | 
						|
        spiobj->spiIRQ = SPI4_IRQn;
 | 
						|
        spiobj->spiIndex = 4;
 | 
						|
        spi4Handle = &spiobj->handle;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI5_BASE
 | 
						|
    if (spiobj->spi == SPI_5) {
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI5;
 | 
						|
#if defined RCC_SPI45CLKSOURCE_PCLK1
 | 
						|
        PeriphClkInit.Spi45ClockSelection = RCC_SPI45CLKSOURCE_PCLK1;
 | 
						|
#else
 | 
						|
        PeriphClkInit.Spi5ClockSelection = RCC_SPI5CLKSOURCE_PCLK3;
 | 
						|
#endif
 | 
						|
        if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
 | 
						|
            error("HAL_RCCEx_PeriphCLKConfig\n");
 | 
						|
        }
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
        __HAL_RCC_SPI5_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI5_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI5_CLK_ENABLE();
 | 
						|
        spiobj->spiIRQ = SPI5_IRQn;
 | 
						|
        spiobj->spiIndex = 5;
 | 
						|
        spi5Handle = &spiobj->handle;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI6_BASE
 | 
						|
    if (spiobj->spi == SPI_6) {
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI6;
 | 
						|
#if defined RCC_SPI6CLKSOURCE_PCLK4
 | 
						|
        PeriphClkInit.Spi6ClockSelection = RCC_SPI6CLKSOURCE_PCLK4;
 | 
						|
#else
 | 
						|
        PeriphClkInit.Spi6ClockSelection = RCC_SPI6CLKSOURCE_PCLK2;
 | 
						|
#endif
 | 
						|
        if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
 | 
						|
            error("HAL_RCCEx_PeriphCLKConfig\n");
 | 
						|
        }
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
        __HAL_RCC_SPI6_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI6_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI6_CLK_ENABLE();
 | 
						|
        spiobj->spiIRQ = SPI6_IRQn;
 | 
						|
        spiobj->spiIndex = 6;
 | 
						|
        spi6Handle = &spiobj->handle;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // Configure the SPI pins
 | 
						|
    pin_function(pinmap->mosi_pin, pinmap->mosi_function);
 | 
						|
    pin_mode(pinmap->mosi_pin, PullDown);  // Pull Down is set for output line
 | 
						|
 | 
						|
    pin_function(pinmap->miso_pin, pinmap->miso_function);
 | 
						|
    pin_mode(pinmap->miso_pin, PullNone);
 | 
						|
 | 
						|
    pin_function(pinmap->sclk_pin, pinmap->sclk_function);
 | 
						|
    pin_mode(pinmap->sclk_pin, PullNone);
 | 
						|
 | 
						|
    spiobj->pin_miso = pinmap->miso_pin;
 | 
						|
    spiobj->pin_mosi = pinmap->mosi_pin;
 | 
						|
    spiobj->pin_sclk = pinmap->sclk_pin;
 | 
						|
    spiobj->pin_ssel = pinmap->ssel_pin;
 | 
						|
    if (pinmap->ssel_pin != NC) {
 | 
						|
        pin_function(pinmap->ssel_pin, pinmap->ssel_function);
 | 
						|
        pin_mode(pinmap->ssel_pin, PullNone);
 | 
						|
        handle->Init.NSS = SPI_NSS_HARD_OUTPUT;
 | 
						|
#if defined(SPI_NSS_PULSE_ENABLE)
 | 
						|
        handle->Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        handle->Init.NSS = SPI_NSS_SOFT;
 | 
						|
#if defined(SPI_NSS_PULSE_DISABLE)
 | 
						|
        handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    /* Fill default value */
 | 
						|
    handle->Instance = SPI_INST(obj);
 | 
						|
    handle->Init.Mode              = SPI_MODE_MASTER;
 | 
						|
    handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
 | 
						|
 | 
						|
    if (pinmap->miso_pin != NC) {
 | 
						|
        handle->Init.Direction     = SPI_DIRECTION_2LINES;
 | 
						|
    } else {
 | 
						|
        handle->Init.Direction      = SPI_DIRECTION_1LINE;
 | 
						|
    }
 | 
						|
 | 
						|
    handle->Init.CLKPhase          = SPI_PHASE_1EDGE;
 | 
						|
    handle->Init.CLKPolarity       = SPI_POLARITY_LOW;
 | 
						|
    handle->Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLE;
 | 
						|
    handle->Init.CRCPolynomial     = 7;
 | 
						|
#if defined(SPI_CRC_LENGTH_DATASIZE)
 | 
						|
    handle->Init.CRCLength         = SPI_CRC_LENGTH_DATASIZE;
 | 
						|
#endif
 | 
						|
    handle->Init.DataSize          = SPI_DATASIZE_8BIT;
 | 
						|
    handle->Init.FirstBit          = SPI_FIRSTBIT_MSB;
 | 
						|
 | 
						|
#if defined (SPI_IP_VERSION_V2)
 | 
						|
    handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
 | 
						|
    handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
 | 
						|
    handle->Init.FifoThreshold     = SPI_FIFO_THRESHOLD_01DATA;
 | 
						|
    handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
 | 
						|
    handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
 | 
						|
    handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
 | 
						|
    handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
 | 
						|
    handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
 | 
						|
    handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
 | 
						|
#if defined(SPI_RDY_MASTER_MANAGEMENT_INTERNALLY)
 | 
						|
    handle->Init.ReadyMasterManagement = SPI_RDY_MASTER_MANAGEMENT_INTERNALLY;
 | 
						|
    handle->Init.ReadyPolarity = SPI_RDY_POLARITY_HIGH;
 | 
						|
#endif
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
    /*
 | 
						|
    * According the STM32 Datasheet for SPI peripheral we need to PULLDOWN
 | 
						|
    * or PULLUP the SCK pin according the polarity used.
 | 
						|
    */
 | 
						|
    pin_mode(spiobj->pin_sclk, (handle->Init.CLKPolarity == SPI_POLARITY_LOW) ? PullDown : PullUp);
 | 
						|
 | 
						|
    init_spi(obj);
 | 
						|
}
 | 
						|
 | 
						|
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
 | 
						|
{
 | 
						|
    // determine the SPI to use
 | 
						|
    uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
 | 
						|
    uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
 | 
						|
    uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
 | 
						|
    uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
 | 
						|
    uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
 | 
						|
    uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
 | 
						|
 | 
						|
    int peripheral = (int)pinmap_merge(spi_data, spi_cntl);
 | 
						|
 | 
						|
    // pin out the spi pins
 | 
						|
    int mosi_function = (int)pinmap_find_function(mosi, PinMap_SPI_MOSI);
 | 
						|
    int miso_function = (int)pinmap_find_function(miso, PinMap_SPI_MISO);
 | 
						|
    int sclk_function = (int)pinmap_find_function(sclk, PinMap_SPI_SCLK);
 | 
						|
    int ssel_function = (int)pinmap_find_function(ssel, PinMap_SPI_SSEL);
 | 
						|
 | 
						|
    const spi_pinmap_t explicit_spi_pinmap = {peripheral, mosi, mosi_function, miso, miso_function, sclk, sclk_function, ssel, ssel_function};
 | 
						|
 | 
						|
    SPI_INIT_DIRECT(obj, &explicit_spi_pinmap);
 | 
						|
}
 | 
						|
 | 
						|
#if STM32_SPI_CAPABILITY_DMA
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize the DMA for an SPI object in the Tx direction.
 | 
						|
 * Does nothing if DMA is already initialized.
 | 
						|
 */
 | 
						|
static void spi_init_tx_dma(struct spi_s * obj)
 | 
						|
{
 | 
						|
    if(!obj->txDMAInitialized)
 | 
						|
    {
 | 
						|
#ifdef TARGET_MCU_STM32H7
 | 
						|
        // For STM32H7, SPI6 does not support DMA through the normal mechanism -- it would require use of the BDMA
 | 
						|
        // controller, which we don't currently support, and which can only access data in SRAM4.
 | 
						|
        if(obj->spiIndex == 6)
 | 
						|
        {
 | 
						|
            mbed_error(MBED_ERROR_UNSUPPORTED, "DMA not supported on SPI6!", 0, MBED_FILENAME, __LINE__);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        // Get DMA handle
 | 
						|
        DMALinkInfo const *dmaLink = &SPITxDMALinks[obj->spiIndex - 1];
 | 
						|
 | 
						|
        // Initialize DMA channel
 | 
						|
        DMA_HandleTypeDef *dmaHandle = stm_init_dma_link(dmaLink, DMA_MEMORY_TO_PERIPH, false, true, 1, 1);
 | 
						|
 | 
						|
        if(dmaHandle == NULL)
 | 
						|
        {
 | 
						|
            mbed_error(MBED_ERROR_ALREADY_IN_USE, "Tx DMA channel already used by something else!", 0, MBED_FILENAME, __LINE__);
 | 
						|
        }
 | 
						|
 | 
						|
        __HAL_LINKDMA(&obj->handle, hdmatx, *dmaHandle);
 | 
						|
        obj->txDMAInitialized = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize the DMA for an SPI object in the Rx direction.
 | 
						|
 * Does nothing if DMA is already initialized.
 | 
						|
 */
 | 
						|
static void spi_init_rx_dma(struct spi_s * obj)
 | 
						|
{
 | 
						|
    if(!obj->rxDMAInitialized)
 | 
						|
    {
 | 
						|
#ifdef TARGET_MCU_STM32H7
 | 
						|
        // For STM32H7, SPI6 does not support DMA through the normal mechanism -- it would require use of the BDMA
 | 
						|
        // controller, which we don't currently support, and which can only access data in SRAM4.
 | 
						|
        if(obj->spiIndex == 6)
 | 
						|
        {
 | 
						|
            mbed_error(MBED_ERROR_UNSUPPORTED, "DMA not supported on SPI6!", 0, MBED_FILENAME, __LINE__);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        // Get DMA handle
 | 
						|
        DMALinkInfo const *dmaLink = &SPIRxDMALinks[obj->spiIndex - 1];
 | 
						|
 | 
						|
        // Initialize DMA channel
 | 
						|
        DMA_HandleTypeDef *dmaHandle = stm_init_dma_link(dmaLink, DMA_PERIPH_TO_MEMORY, false, true, 1, 1);
 | 
						|
 | 
						|
        if(dmaHandle == NULL)
 | 
						|
        {
 | 
						|
            mbed_error(MBED_ERROR_ALREADY_IN_USE, "Rx DMA channel already used by something else!", 0, MBED_FILENAME, __LINE__);
 | 
						|
        }
 | 
						|
 | 
						|
        __HAL_LINKDMA(&obj->handle, hdmarx, *dmaHandle);
 | 
						|
        obj->rxDMAInitialized = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
void spi_free(spi_t *obj)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    DEBUG_PRINTF("spi_free\r\n");
 | 
						|
 | 
						|
#if STM32_SPI_CAPABILITY_DMA
 | 
						|
    // Free DMA channels if allocated
 | 
						|
    if(spiobj->txDMAInitialized)
 | 
						|
    {
 | 
						|
        stm_free_dma_link(&SPITxDMALinks[spiobj->spiIndex - 1]);
 | 
						|
        spiobj->txDMAInitialized = false;
 | 
						|
    }
 | 
						|
    if(spiobj->rxDMAInitialized)
 | 
						|
    {
 | 
						|
        stm_free_dma_link(&SPIRxDMALinks[spiobj->spiIndex - 1]);
 | 
						|
        spiobj->rxDMAInitialized = false;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    __HAL_SPI_DISABLE(handle);
 | 
						|
    HAL_SPI_DeInit(handle);
 | 
						|
 | 
						|
#if defined(DUAL_CORE) && (TARGET_STM32H7)
 | 
						|
    while (LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID)) {
 | 
						|
    }
 | 
						|
#endif /* DUAL_CORE */
 | 
						|
#if defined SPI1_BASE
 | 
						|
    // Reset SPI and disable clock
 | 
						|
    if (spiobj->spi == SPI_1) {
 | 
						|
        __HAL_RCC_SPI1_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI1_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI1_CLK_DISABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined SPI2_BASE
 | 
						|
    if (spiobj->spi == SPI_2) {
 | 
						|
        __HAL_RCC_SPI2_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI2_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI2_CLK_DISABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI3_BASE
 | 
						|
    if (spiobj->spi == SPI_3) {
 | 
						|
        __HAL_RCC_SPI3_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI3_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI3_CLK_DISABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI4_BASE
 | 
						|
    if (spiobj->spi == SPI_4) {
 | 
						|
        __HAL_RCC_SPI4_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI4_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI4_CLK_DISABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI5_BASE
 | 
						|
    if (spiobj->spi == SPI_5) {
 | 
						|
        __HAL_RCC_SPI5_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI5_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI5_CLK_DISABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined SPI6_BASE
 | 
						|
    if (spiobj->spi == SPI_6) {
 | 
						|
        __HAL_RCC_SPI6_FORCE_RESET();
 | 
						|
        __HAL_RCC_SPI6_RELEASE_RESET();
 | 
						|
        __HAL_RCC_SPI6_CLK_DISABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(DUAL_CORE) && (TARGET_STM32H7)
 | 
						|
    LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, HSEM_CR_COREID_CURRENT);
 | 
						|
#endif /* DUAL_CORE */
 | 
						|
 | 
						|
    // Configure GPIOs back to reset value
 | 
						|
    pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
 | 
						|
    pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
 | 
						|
    pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
 | 
						|
    if (handle->Init.NSS != SPI_NSS_SOFT) {
 | 
						|
        pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void spi_format(spi_t *obj, int bits, int mode, int slave)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
    PinMode pull = PullNone;
 | 
						|
 | 
						|
    DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave);
 | 
						|
 | 
						|
    // Save new values
 | 
						|
    uint32_t DataSize;
 | 
						|
    switch (bits) {
 | 
						|
#if defined(SPI_DATASIZE_4BIT)
 | 
						|
        case 4:
 | 
						|
            DataSize = SPI_DATASIZE_4BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_5BIT)
 | 
						|
        case 5:
 | 
						|
            DataSize = SPI_DATASIZE_5BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_6BIT)
 | 
						|
        case 6:
 | 
						|
            DataSize = SPI_DATASIZE_6BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_7BIT)
 | 
						|
        case 7:
 | 
						|
            DataSize = SPI_DATASIZE_7BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_9BIT)
 | 
						|
        case 9:
 | 
						|
            DataSize = SPI_DATASIZE_9BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_10BIT)
 | 
						|
        case 10:
 | 
						|
            DataSize = SPI_DATASIZE_10BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_11BIT)
 | 
						|
        case 11:
 | 
						|
            DataSize = SPI_DATASIZE_11BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_12BIT)
 | 
						|
        case 12:
 | 
						|
            DataSize = SPI_DATASIZE_12BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_13BIT)
 | 
						|
        case 13:
 | 
						|
            DataSize = SPI_DATASIZE_13BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_14BIT)
 | 
						|
        case 14:
 | 
						|
            DataSize = SPI_DATASIZE_14BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_15BIT)
 | 
						|
        case 15:
 | 
						|
            DataSize = SPI_DATASIZE_15BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_17BIT)
 | 
						|
        case 17:
 | 
						|
            DataSize = SPI_DATASIZE_17BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_18BIT)
 | 
						|
        case 18:
 | 
						|
            DataSize = SPI_DATASIZE_18BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_19BIT)
 | 
						|
        case 19:
 | 
						|
            DataSize = SPI_DATASIZE_19BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_20BIT)
 | 
						|
        case 20:
 | 
						|
            DataSize = SPI_DATASIZE_20BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_21BIT)
 | 
						|
        case 21:
 | 
						|
            DataSize = SPI_DATASIZE_21BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_22BIT)
 | 
						|
        case 22:
 | 
						|
            DataSize = SPI_DATASIZE_22BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_23BIT)
 | 
						|
        case 23:
 | 
						|
            DataSize = SPI_DATASIZE_23BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_24BIT)
 | 
						|
        case 24:
 | 
						|
            DataSize = SPI_DATASIZE_24BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_25BIT)
 | 
						|
        case 25:
 | 
						|
            DataSize = SPI_DATASIZE_25BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_26BIT)
 | 
						|
        case 26:
 | 
						|
            DataSize = SPI_DATASIZE_26BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_27BIT)
 | 
						|
        case 27:
 | 
						|
            DataSize = SPI_DATASIZE_27BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_28BIT)
 | 
						|
        case 28:
 | 
						|
            DataSize = SPI_DATASIZE_28BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_29BIT)
 | 
						|
        case 29:
 | 
						|
            DataSize = SPI_DATASIZE_29BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_30BIT)
 | 
						|
        case 30:
 | 
						|
            DataSize = SPI_DATASIZE_30BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_31BIT)
 | 
						|
        case 31:
 | 
						|
            DataSize = SPI_DATASIZE_31BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_32BIT)
 | 
						|
        case 32:
 | 
						|
            DataSize = SPI_DATASIZE_32BIT;
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
        case 16:
 | 
						|
            DataSize = SPI_DATASIZE_16BIT;
 | 
						|
            break;
 | 
						|
        // 8 bits is the default for anything not found before
 | 
						|
        default:
 | 
						|
            DataSize = SPI_DATASIZE_8BIT;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    handle->Init.DataSize = DataSize;
 | 
						|
 | 
						|
    switch (mode) {
 | 
						|
        case 0:
 | 
						|
            handle->Init.CLKPolarity = SPI_POLARITY_LOW;
 | 
						|
            handle->Init.CLKPhase = SPI_PHASE_1EDGE;
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
            handle->Init.CLKPolarity = SPI_POLARITY_LOW;
 | 
						|
            handle->Init.CLKPhase = SPI_PHASE_2EDGE;
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
 | 
						|
            handle->Init.CLKPhase = SPI_PHASE_1EDGE;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
 | 
						|
            handle->Init.CLKPhase = SPI_PHASE_2EDGE;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (handle->Init.NSS != SPI_NSS_SOFT) {
 | 
						|
        handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT;
 | 
						|
    }
 | 
						|
 | 
						|
    if (slave) {
 | 
						|
        handle->Init.Mode = SPI_MODE_SLAVE;
 | 
						|
 | 
						|
        if (handle->Init.Direction == SPI_DIRECTION_1LINE) {
 | 
						|
            /*  SPI slave implemtation in MBED does not support the 3 wires SPI.
 | 
						|
             *  (e.g. when MISO is not connected). So we're forcing slave in
 | 
						|
             *  2LINES mode. As MISO is not connected, slave will only read
 | 
						|
             *  from master, and cannot write to it.
 | 
						|
             */
 | 
						|
            handle->Init.Direction = SPI_DIRECTION_2LINES;
 | 
						|
        }
 | 
						|
 | 
						|
        pin_mode(spiobj->pin_mosi, PullNone);
 | 
						|
        pin_mode(spiobj->pin_miso, PullDown);  // Pull Down is set for output line
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
    * According the STM32 Datasheet for SPI peripheral we need to PULLDOWN
 | 
						|
    * or PULLUP the SCK pin according the polarity used.
 | 
						|
    */
 | 
						|
    pull = (handle->Init.CLKPolarity == SPI_POLARITY_LOW) ? PullDown : PullUp;
 | 
						|
    pin_mode(spiobj->pin_sclk, pull);
 | 
						|
 | 
						|
    init_spi(obj);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Only the IP clock input is family dependant so it computed
 | 
						|
 * separately in spi_get_clock_freq
 | 
						|
 */
 | 
						|
extern int spi_get_clock_freq(spi_t *obj);
 | 
						|
 | 
						|
static const uint32_t baudrate_prescaler_table[] =  {SPI_BAUDRATEPRESCALER_2,
 | 
						|
                                                     SPI_BAUDRATEPRESCALER_4,
 | 
						|
                                                     SPI_BAUDRATEPRESCALER_8,
 | 
						|
                                                     SPI_BAUDRATEPRESCALER_16,
 | 
						|
                                                     SPI_BAUDRATEPRESCALER_32,
 | 
						|
                                                     SPI_BAUDRATEPRESCALER_64,
 | 
						|
                                                     SPI_BAUDRATEPRESCALER_128,
 | 
						|
                                                     SPI_BAUDRATEPRESCALER_256
 | 
						|
                                                    };
 | 
						|
 | 
						|
/**
 | 
						|
 * Convert SPI_BAUDRATEPRESCALER_<X> constant into numeric prescaler rank.
 | 
						|
 */
 | 
						|
static uint8_t spi_get_baudrate_prescaler_rank(uint32_t value)
 | 
						|
{
 | 
						|
    switch (value) {
 | 
						|
        case SPI_BAUDRATEPRESCALER_2:
 | 
						|
            return 0;
 | 
						|
        case SPI_BAUDRATEPRESCALER_4:
 | 
						|
            return 1;
 | 
						|
        case SPI_BAUDRATEPRESCALER_8:
 | 
						|
            return 2;
 | 
						|
        case SPI_BAUDRATEPRESCALER_16:
 | 
						|
            return 3;
 | 
						|
        case SPI_BAUDRATEPRESCALER_32:
 | 
						|
            return 4;
 | 
						|
        case SPI_BAUDRATEPRESCALER_64:
 | 
						|
            return 5;
 | 
						|
        case SPI_BAUDRATEPRESCALER_128:
 | 
						|
            return 6;
 | 
						|
        case SPI_BAUDRATEPRESCALER_256:
 | 
						|
            return 7;
 | 
						|
        default:
 | 
						|
            return 0xFF;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Get actual SPI baudrate.
 | 
						|
 *
 | 
						|
 * It may differ from a value that is passed to the ::spi_frequency function.
 | 
						|
 */
 | 
						|
int spi_get_baudrate(spi_t *obj)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    int freq = spi_get_clock_freq(obj);
 | 
						|
    uint8_t baudrate_rank = spi_get_baudrate_prescaler_rank(handle->Init.BaudRatePrescaler);
 | 
						|
    MBED_ASSERT(baudrate_rank != 0xFF);
 | 
						|
    return freq >> (baudrate_rank + 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void spi_frequency(spi_t *obj, int hz)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    int spi_hz = 0;
 | 
						|
    uint8_t prescaler_rank = 0;
 | 
						|
    uint8_t last_index = (sizeof(baudrate_prescaler_table) / sizeof(baudrate_prescaler_table[0])) - 1;
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    /* Calculate the spi clock for prescaler_rank 0: SPI_BAUDRATEPRESCALER_2 */
 | 
						|
    spi_hz = spi_get_clock_freq(obj) / 2;
 | 
						|
 | 
						|
    /* Define pre-scaler in order to get highest available frequency below requested frequency */
 | 
						|
    while ((spi_hz > hz) && (prescaler_rank < last_index)) {
 | 
						|
        spi_hz = spi_hz / 2;
 | 
						|
        prescaler_rank++;
 | 
						|
    }
 | 
						|
 | 
						|
    /*  Use the best fit pre-scaler */
 | 
						|
    handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank];
 | 
						|
 | 
						|
    /*  In case maximum pre-scaler still gives too high freq, raise an error */
 | 
						|
    if (spi_hz > hz) {
 | 
						|
        DEBUG_PRINTF("WARNING: lowest SPI freq (%d)  higher than requested (%d)\r\n", spi_hz, hz);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG_PRINTF("spi_frequency, request:%d, select:%d\r\n", hz, spi_hz);
 | 
						|
 | 
						|
    init_spi(obj);
 | 
						|
}
 | 
						|
 | 
						|
static inline int ssp_readable(spi_t *obj)
 | 
						|
{
 | 
						|
    int status;
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    // Check if data is received
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXP) != RESET) ? 1 : 0);
 | 
						|
#else /* SPI_IP_VERSION_V2 */
 | 
						|
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
    return status;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ssp_writeable(spi_t *obj)
 | 
						|
{
 | 
						|
    int status;
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    // Check if data is transmitted
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXP) != RESET) ? 1 : 0);
 | 
						|
#else /* SPI_IP_VERSION_V2 */
 | 
						|
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
    return status;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ssp_busy(spi_t *obj)
 | 
						|
{
 | 
						|
    int status;
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXWNE) != RESET) ? 1 : 0);
 | 
						|
#else /* SPI_IP_VERSION_V2 */
 | 
						|
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
    return status;
 | 
						|
}
 | 
						|
 | 
						|
static inline int datasize_to_transfer_bitshift(uint32_t DataSize)
 | 
						|
{
 | 
						|
    switch (DataSize) {
 | 
						|
#if defined(SPI_DATASIZE_4BIT)
 | 
						|
        case SPI_DATASIZE_4BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_5BIT)
 | 
						|
        case SPI_DATASIZE_5BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_6BIT)
 | 
						|
        case SPI_DATASIZE_6BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_7BIT)
 | 
						|
        case SPI_DATASIZE_7BIT:
 | 
						|
#endif
 | 
						|
        case SPI_DATASIZE_8BIT:
 | 
						|
            return 0;
 | 
						|
#if defined(SPI_DATASIZE_9BIT)
 | 
						|
        case SPI_DATASIZE_9BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_10BIT)
 | 
						|
        case SPI_DATASIZE_10BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_11BIT)
 | 
						|
        case SPI_DATASIZE_11BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_12BIT)
 | 
						|
        case SPI_DATASIZE_12BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_13BIT)
 | 
						|
        case SPI_DATASIZE_13BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_14BIT)
 | 
						|
        case SPI_DATASIZE_14BIT:
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_15BIT)
 | 
						|
        case SPI_DATASIZE_15BIT:
 | 
						|
#endif
 | 
						|
        case SPI_DATASIZE_16BIT:
 | 
						|
            return 1;
 | 
						|
#if defined(SPI_DATASIZE_17BIT)
 | 
						|
        case SPI_DATASIZE_17BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_18BIT)
 | 
						|
        case SPI_DATASIZE_18BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_19BIT)
 | 
						|
        case SPI_DATASIZE_19BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_20BIT)
 | 
						|
        case SPI_DATASIZE_20BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_21BIT)
 | 
						|
        case SPI_DATASIZE_21BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_22BIT)
 | 
						|
        case SPI_DATASIZE_22BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_23BIT)
 | 
						|
        case SPI_DATASIZE_23BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_24BIT)
 | 
						|
        case SPI_DATASIZE_24BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_25BIT)
 | 
						|
        case SPI_DATASIZE_25BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_26BIT)
 | 
						|
        case SPI_DATASIZE_26BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_27BIT)
 | 
						|
        case SPI_DATASIZE_27BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_28BIT)
 | 
						|
        case SPI_DATASIZE_28BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_29BIT)
 | 
						|
        case SPI_DATASIZE_29BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_30BIT)
 | 
						|
        case SPI_DATASIZE_30BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_31BIT)
 | 
						|
        case SPI_DATASIZE_31BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
#if defined(SPI_DATASIZE_32BIT)
 | 
						|
        case SPI_DATASIZE_32BIT:
 | 
						|
            return 2;
 | 
						|
#endif
 | 
						|
        // This point should never be reached, so return a negative value for assertion checking
 | 
						|
        default:
 | 
						|
            return -1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int spi_get_word_from_buffer(const void *buffer, int bitshift)
 | 
						|
{
 | 
						|
    if (bitshift == 1) {
 | 
						|
        return *((uint16_t *)buffer);
 | 
						|
#ifdef HAS_32BIT_SPI_TRANSFERS
 | 
						|
    } else if (bitshift == 2) {
 | 
						|
        return *((uint32_t *)buffer);
 | 
						|
#endif /* HAS_32BIT_SPI_TRANSFERS */
 | 
						|
    } else {
 | 
						|
        return *((uint8_t *)buffer);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void spi_put_word_to_buffer(void *buffer, int bitshift, int data)
 | 
						|
{
 | 
						|
    if (bitshift == 1) {
 | 
						|
        *((uint16_t *)buffer) = data;
 | 
						|
#ifdef HAS_32BIT_SPI_TRANSFERS
 | 
						|
    } else if (bitshift == 2) {
 | 
						|
        *((uint32_t *)buffer) = data;
 | 
						|
#endif /* HAS_32BIT_SPI_TRANSFERS */
 | 
						|
    } else {
 | 
						|
        *((uint8_t *)buffer) = data;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Check if SPI master interface is writable.
 | 
						|
 *
 | 
						|
 * @param obj
 | 
						|
 * @return  0 - SPI isn't writable, non-zero - SPI is writable
 | 
						|
 */
 | 
						|
static inline int msp_writable(spi_t *obj)
 | 
						|
{
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    return (int)LL_SPI_IsActiveFlag_TXP(SPI_INST(obj));
 | 
						|
#else /* SPI_IP_VERSION_V2 */
 | 
						|
    return (int)LL_SPI_IsActiveFlag_TXE(SPI_INST(obj));
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Check if SPI master interface is readable.
 | 
						|
 *
 | 
						|
 * @param obj
 | 
						|
 * @return 0 - SPI isn't readable, non-zero - SPI is readable
 | 
						|
 */
 | 
						|
static inline int msp_readable(spi_t *obj)
 | 
						|
{
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    return (int)LL_SPI_IsActiveFlag_RXP(SPI_INST(obj));
 | 
						|
#else /* SPI_IP_VERSION_V2 */
 | 
						|
    return (int)LL_SPI_IsActiveFlag_RXNE(SPI_INST(obj));
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Wait till SPI master interface is writable.
 | 
						|
 */
 | 
						|
static inline void msp_wait_writable(spi_t *obj)
 | 
						|
{
 | 
						|
    while (!msp_writable(obj));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Wait till SPI master interface is readable.
 | 
						|
 */
 | 
						|
static inline void msp_wait_readable(spi_t *obj)
 | 
						|
{
 | 
						|
    while (!msp_readable(obj));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Check if SPI master interface is busy.
 | 
						|
 *
 | 
						|
 * @param obj
 | 
						|
 * @return 0 - SPI isn't busy, non-zero - SPI is busy
 | 
						|
 */
 | 
						|
static inline int msp_busy(spi_t *obj)
 | 
						|
{
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    return !(int)LL_SPI_IsActiveFlag_TXC(SPI_INST(obj));
 | 
						|
#else /* SPI_IP_VERSION_V2 */
 | 
						|
    return (int)LL_SPI_IsActiveFlag_BSY(SPI_INST(obj));
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Wait till SPI master interface isn't busy.
 | 
						|
 */
 | 
						|
static inline void msp_wait_not_busy(spi_t *obj)
 | 
						|
{
 | 
						|
    while (msp_busy(obj));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Write data to SPI master interface.
 | 
						|
 */
 | 
						|
static inline void msp_write_data(spi_t *obj, int value, int bitshift)
 | 
						|
{
 | 
						|
    if (bitshift == 1) {
 | 
						|
        LL_SPI_TransmitData16(SPI_INST(obj), (uint16_t)value);
 | 
						|
#ifdef HAS_32BIT_SPI_TRANSFERS
 | 
						|
    } else if (bitshift == 2) {
 | 
						|
        LL_SPI_TransmitData32(SPI_INST(obj), (uint32_t)value);
 | 
						|
#endif /* HAS_32BIT_SPI_TRANSFERS */
 | 
						|
    } else {
 | 
						|
        LL_SPI_TransmitData8(SPI_INST(obj), (uint8_t)value);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Read data from SPI master interface.
 | 
						|
 */
 | 
						|
static inline int msp_read_data(spi_t *obj, int bitshift)
 | 
						|
{
 | 
						|
    if (bitshift == 1) {
 | 
						|
        return LL_SPI_ReceiveData16(SPI_INST(obj));
 | 
						|
#ifdef HAS_32BIT_SPI_TRANSFERS
 | 
						|
    } else if (bitshift == 2) {
 | 
						|
        return LL_SPI_ReceiveData32(SPI_INST(obj));
 | 
						|
#endif /* HAS_32BIT_SPI_TRANSFERS */
 | 
						|
    } else {
 | 
						|
        return LL_SPI_ReceiveData8(SPI_INST(obj));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Transmit and receive SPI data in bidirectional mode.
 | 
						|
 *
 | 
						|
 * @param obj spi object
 | 
						|
 * @param tx_buffer byte-array of data to write to the device
 | 
						|
 * @param tx_length number of bytes to write, may be zero
 | 
						|
 * @param rx_buffer byte-array of data to read from the device
 | 
						|
 * @param rx_length number of bytes to read, may be zero
 | 
						|
 * @return number of transmitted and received bytes or negative code in case of error.
 | 
						|
 */
 | 
						|
static int spi_master_one_wire_transfer(spi_t *obj, const char *tx_buffer, int tx_length,
 | 
						|
                                        char *rx_buffer, int rx_length)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
    const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
 | 
						|
    MBED_ASSERT(bitshift >= 0);
 | 
						|
    const int word_size = 0x01 << bitshift;
 | 
						|
 | 
						|
    /* Ensure that spi is disabled */
 | 
						|
    LL_SPI_Disable(SPI_INST(obj));
 | 
						|
 | 
						|
    /* Transmit data */
 | 
						|
    if (tx_length) {
 | 
						|
        LL_SPI_SetTransferDirection(SPI_INST(obj), LL_SPI_HALF_DUPLEX_TX);
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        /* Set transaction size */
 | 
						|
        LL_SPI_SetTransferSize(SPI_INST(obj), tx_length >> bitshift);
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
        LL_SPI_Enable(SPI_INST(obj));
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        /* Master transfer start */
 | 
						|
        LL_SPI_StartMasterTransfer(SPI_INST(obj));
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
        for (int i = 0; i < tx_length; i += word_size) {
 | 
						|
            msp_wait_writable(obj);
 | 
						|
            msp_write_data(obj, spi_get_word_from_buffer(tx_buffer + i, bitshift), bitshift);
 | 
						|
        }
 | 
						|
 | 
						|
        /* Wait end of transaction */
 | 
						|
        msp_wait_not_busy(obj);
 | 
						|
 | 
						|
        LL_SPI_Disable(SPI_INST(obj));
 | 
						|
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        /* Clear transaction flags */
 | 
						|
        LL_SPI_ClearFlag_EOT(SPI_INST(obj));
 | 
						|
        LL_SPI_ClearFlag_TXTF(SPI_INST(obj));
 | 
						|
        /* Reset transaction size */
 | 
						|
        LL_SPI_SetTransferSize(SPI_INST(obj), 0);
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Receive data */
 | 
						|
    if (rx_length) {
 | 
						|
        LL_SPI_SetTransferDirection(SPI_INST(obj), LL_SPI_HALF_DUPLEX_RX);
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        /* Set transaction size and run SPI */
 | 
						|
        LL_SPI_SetTransferSize(SPI_INST(obj), rx_length >> bitshift);
 | 
						|
        LL_SPI_Enable(SPI_INST(obj));
 | 
						|
        LL_SPI_StartMasterTransfer(SPI_INST(obj));
 | 
						|
 | 
						|
        /* Receive data */
 | 
						|
        for (int i = 0; i < rx_length; i += word_size) {
 | 
						|
            msp_wait_readable(obj);
 | 
						|
            spi_put_word_to_buffer(rx_buffer + i, bitshift, msp_read_data(obj, bitshift));
 | 
						|
        }
 | 
						|
 | 
						|
        /* Stop SPI */
 | 
						|
        LL_SPI_Disable(SPI_INST(obj));
 | 
						|
        /* Clear transaction flags */
 | 
						|
        LL_SPI_ClearFlag_EOT(SPI_INST(obj));
 | 
						|
        LL_SPI_ClearFlag_TXTF(SPI_INST(obj));
 | 
						|
        /* Reset transaction size */
 | 
						|
        LL_SPI_SetTransferSize(SPI_INST(obj), 0);
 | 
						|
 | 
						|
#else /* SPI_IP_VERSION_V2 */
 | 
						|
        /* Unlike STM32H7 other STM32 families generates SPI Clock signal continuously in half-duplex receive mode
 | 
						|
         * till SPI is enabled. To stop clock generation a SPI should be disabled during last frame receiving,
 | 
						|
         * after generation at least one SPI clock cycle. It causes necessity of critical section usage.
 | 
						|
         * So the following consequences of steps is used to receive each byte:
 | 
						|
         * 1. Enter into critical section.
 | 
						|
         * 2. Enable SPI.
 | 
						|
         * 3. Wait one SPI clock cycle.
 | 
						|
         * 4. Disable SPI.
 | 
						|
         * 5. Wait full byte receiving.
 | 
						|
         * 6. Read byte.
 | 
						|
         * It gives some overhead, but gives stable byte reception without dummy reads and
 | 
						|
         * short delay of critical section holding.
 | 
						|
         */
 | 
						|
 | 
						|
        /* get estimation about one SPI clock cycle */
 | 
						|
        uint32_t baudrate_period_ns = 1000000000 / spi_get_baudrate(obj);
 | 
						|
 | 
						|
        for (int i = 0; i < rx_length; i += word_size) {
 | 
						|
            core_util_critical_section_enter();
 | 
						|
            LL_SPI_Enable(SPI_INST(obj));
 | 
						|
            /* Wait single SPI clock cycle. */
 | 
						|
            wait_ns(baudrate_period_ns);
 | 
						|
            LL_SPI_Disable(SPI_INST(obj));
 | 
						|
            core_util_critical_section_exit();
 | 
						|
 | 
						|
            msp_wait_readable(obj);
 | 
						|
            spi_put_word_to_buffer(rx_buffer + i, bitshift, msp_read_data(obj, bitshift));
 | 
						|
        }
 | 
						|
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
    }
 | 
						|
 | 
						|
    return rx_length + tx_length;
 | 
						|
}
 | 
						|
 | 
						|
int spi_master_write(spi_t *obj, int value)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    if (handle->Init.Direction == SPI_DIRECTION_1LINE) {
 | 
						|
        int result = spi_master_one_wire_transfer(obj, (const char *)&value, 1, NULL, 0);
 | 
						|
        return result == 1 ? HAL_OK : HAL_ERROR;
 | 
						|
    }
 | 
						|
    const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
 | 
						|
    MBED_ASSERT(bitshift >= 0);
 | 
						|
 | 
						|
#if defined(LL_SPI_RX_FIFO_TH_HALF)
 | 
						|
    /*  Configure the default data size */
 | 
						|
    if (bitshift == 0) {
 | 
						|
        LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_QUARTER);
 | 
						|
    } else {
 | 
						|
        LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_HALF);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /*  Here we're using LL which means direct registers access
 | 
						|
     *  There is no error management, so we may end up looping
 | 
						|
     *  infinitely here in case of faulty device for instance,
 | 
						|
     *  but this will increase performances significantly
 | 
						|
     */
 | 
						|
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    /* Master transfer start */
 | 
						|
    LL_SPI_StartMasterTransfer(SPI_INST(obj));
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
 | 
						|
    /* Transmit data */
 | 
						|
    msp_wait_writable(obj);
 | 
						|
    msp_write_data(obj, value, bitshift);
 | 
						|
 | 
						|
    /* Receive data */
 | 
						|
    msp_wait_readable(obj);
 | 
						|
    return msp_read_data(obj, bitshift);
 | 
						|
}
 | 
						|
 | 
						|
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
 | 
						|
                           char *rx_buffer, int rx_length, char write_fill)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
    const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
 | 
						|
    /* check buffer sizes are multiple of spi word size */
 | 
						|
    MBED_ASSERT(tx_length >> bitshift << bitshift == tx_length);
 | 
						|
    MBED_ASSERT(rx_length >> bitshift << bitshift == rx_length);
 | 
						|
    int total = (tx_length > rx_length) ? tx_length : rx_length;
 | 
						|
 | 
						|
    if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
 | 
						|
        const int word_size = 0x01 << bitshift;
 | 
						|
 | 
						|
        int write_fill_frame = write_fill;
 | 
						|
        /* extend fill symbols for 16/32 bit modes */
 | 
						|
        for (int i = 0; i < word_size; i++) {
 | 
						|
            write_fill_frame = (write_fill_frame << 8) | write_fill;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        for (int i = 0; i < total; i += word_size) {
 | 
						|
            int out = (i < tx_length) ? spi_get_word_from_buffer(tx_buffer + i, bitshift) : write_fill_frame;
 | 
						|
            int in = spi_master_write(obj, out);
 | 
						|
            if (i < rx_length) {
 | 
						|
                spi_put_word_to_buffer(rx_buffer + i, bitshift, in);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* 1 wire case */
 | 
						|
        int result = spi_master_one_wire_transfer(obj, tx_buffer, tx_length, rx_buffer, rx_length);
 | 
						|
        if (result != tx_length + rx_length) {
 | 
						|
            /*  report an error */
 | 
						|
            total = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return total;
 | 
						|
}
 | 
						|
 | 
						|
int spi_slave_receive(spi_t *obj)
 | 
						|
{
 | 
						|
    return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
 | 
						|
};
 | 
						|
 | 
						|
int spi_slave_read(spi_t *obj)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
    while (!ssp_readable(obj));
 | 
						|
    const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
 | 
						|
    MBED_ASSERT(bitshift >= 0);
 | 
						|
 | 
						|
    if (bitshift == 1) {
 | 
						|
        return LL_SPI_ReceiveData16(SPI_INST(obj));
 | 
						|
#ifdef HAS_32BIT_SPI_TRANSFERS
 | 
						|
    } else if (bitshift == 2) {
 | 
						|
        return LL_SPI_ReceiveData32(SPI_INST(obj));
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        return LL_SPI_ReceiveData8(SPI_INST(obj));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void spi_slave_write(spi_t *obj, int value)
 | 
						|
{
 | 
						|
    SPI_TypeDef *spi = SPI_INST(obj);
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
    while (!ssp_writeable(obj));
 | 
						|
    const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
 | 
						|
    MBED_ASSERT(bitshift >= 0);
 | 
						|
 | 
						|
    if (bitshift == 1) {
 | 
						|
        LL_SPI_TransmitData16(spi, (uint16_t)value);
 | 
						|
#ifdef HAS_32BIT_SPI_TRANSFERS
 | 
						|
    } else if (bitshift == 2) {
 | 
						|
        LL_SPI_TransmitData32(spi, (uint32_t)value);
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        LL_SPI_TransmitData8(spi, (uint8_t)value);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int spi_busy(spi_t *obj)
 | 
						|
{
 | 
						|
    return ssp_busy(obj);
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *spi_master_mosi_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_SPI_MOSI;
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *spi_master_miso_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_SPI_MISO;
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *spi_master_clk_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_SPI_SCLK;
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *spi_master_cs_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_SPI_SSEL;
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *spi_slave_mosi_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_SPI_MOSI;
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *spi_slave_miso_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_SPI_MISO;
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *spi_slave_clk_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_SPI_SCLK;
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *spi_slave_cs_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_SPI_SSEL;
 | 
						|
}
 | 
						|
 | 
						|
#if DEVICE_SPI_ASYNCH
 | 
						|
typedef enum {
 | 
						|
    SPI_TRANSFER_TYPE_NONE = 0,
 | 
						|
    SPI_TRANSFER_TYPE_TX = 1,
 | 
						|
    SPI_TRANSFER_TYPE_RX = 2,
 | 
						|
    SPI_TRANSFER_TYPE_TXRX = 3,
 | 
						|
} transfer_type_t;
 | 
						|
 | 
						|
/*
 | 
						|
 * Configure a DMA channel's transfer size to match the given SPI word size
 | 
						|
 */
 | 
						|
static void configure_dma_transfer_size(const uint32_t spiDataSize, DMA_HandleTypeDef * const dmaChannel)
 | 
						|
{
 | 
						|
#if DMA_IP_VERSION_V3
 | 
						|
    uint32_t * const transferSizePtr1 = &dmaChannel->Init.DestDataWidth;
 | 
						|
    uint32_t * const transferSizePtr2 = &dmaChannel->Init.SrcDataWidth;
 | 
						|
    uint32_t neededSizeVal1;
 | 
						|
    uint32_t neededSizeVal2;
 | 
						|
 | 
						|
    if(spiDataSize <= SPI_DATASIZE_8BIT)
 | 
						|
    {
 | 
						|
        neededSizeVal1 = DMA_DEST_DATAWIDTH_BYTE;
 | 
						|
        neededSizeVal2 = DMA_SRC_DATAWIDTH_BYTE;
 | 
						|
    }
 | 
						|
    else if(spiDataSize <= SPI_DATASIZE_16BIT)
 | 
						|
    {
 | 
						|
        neededSizeVal1 = DMA_DEST_DATAWIDTH_HALFWORD;
 | 
						|
        neededSizeVal2 = DMA_SRC_DATAWIDTH_HALFWORD;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        neededSizeVal1 = DMA_DEST_DATAWIDTH_WORD;
 | 
						|
        neededSizeVal2 = DMA_SRC_DATAWIDTH_WORD;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    uint32_t * const transferSizePtr1 = &dmaChannel->Init.PeriphDataAlignment;
 | 
						|
    uint32_t * const transferSizePtr2 = &dmaChannel->Init.MemDataAlignment;
 | 
						|
    uint32_t neededSizeVal1;
 | 
						|
    uint32_t neededSizeVal2;
 | 
						|
 | 
						|
    if(spiDataSize <= SPI_DATASIZE_8BIT)
 | 
						|
    {
 | 
						|
        neededSizeVal1 = DMA_PDATAALIGN_BYTE;
 | 
						|
        neededSizeVal2 = DMA_MDATAALIGN_BYTE;
 | 
						|
    }
 | 
						|
    else if(spiDataSize <= SPI_DATASIZE_16BIT)
 | 
						|
    {
 | 
						|
        neededSizeVal1 = DMA_PDATAALIGN_HALFWORD;
 | 
						|
        neededSizeVal2 = DMA_MDATAALIGN_HALFWORD;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        neededSizeVal1 = DMA_PDATAALIGN_WORD;
 | 
						|
        neededSizeVal2 = DMA_MDATAALIGN_WORD;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // Check values and reinit DMA if needed
 | 
						|
    if(*transferSizePtr1 != neededSizeVal1 || *transferSizePtr2 != neededSizeVal2)
 | 
						|
    {
 | 
						|
        *transferSizePtr1 = neededSizeVal1;
 | 
						|
        *transferSizePtr2 = neededSizeVal2;
 | 
						|
        HAL_DMA_Init(dmaChannel);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// @returns True if DMA was used, false otherwise
 | 
						|
static bool spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length, DMAUsage hint)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
    // bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
 | 
						|
    const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
 | 
						|
    MBED_ASSERT(bitshift >= 0);
 | 
						|
    // the HAL expects number of transfers instead of number of bytes
 | 
						|
    // so the number of transfers depends on the container size
 | 
						|
    size_t words;
 | 
						|
 | 
						|
    obj->spi.transfer_type = transfer_type;
 | 
						|
    words = length >> bitshift;
 | 
						|
 | 
						|
    bool useDMA = false;
 | 
						|
 | 
						|
#if STM32_SPI_CAPABILITY_DMA
 | 
						|
    if (hint != DMA_USAGE_NEVER)
 | 
						|
    {
 | 
						|
        // Initialize DMA channel(s) needed
 | 
						|
        switch (transfer_type)
 | 
						|
        {
 | 
						|
            case SPI_TRANSFER_TYPE_TXRX:
 | 
						|
                spi_init_rx_dma(&obj->spi);
 | 
						|
                spi_init_tx_dma(&obj->spi);
 | 
						|
                break;
 | 
						|
            case SPI_TRANSFER_TYPE_TX:
 | 
						|
                spi_init_tx_dma(&obj->spi);
 | 
						|
                break;
 | 
						|
            case SPI_TRANSFER_TYPE_RX:
 | 
						|
                spi_init_rx_dma(&obj->spi);
 | 
						|
                if(handle->Init.Direction == SPI_DIRECTION_2LINES) {
 | 
						|
                    // For 2 line SPI, doing an Rx-only transfer still requires a second DMA channel to send the fill
 | 
						|
                    // bytes.
 | 
						|
                    spi_init_tx_dma(&obj->spi);
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                break;
 | 
						|
        }
 | 
						|
 | 
						|
        useDMA = true;
 | 
						|
 | 
						|
        // Make sure that the DMA word size matches the SPI word size.  Also check address alignment.
 | 
						|
        if(transfer_type == SPI_TRANSFER_TYPE_TXRX || transfer_type == SPI_TRANSFER_TYPE_TX)
 | 
						|
        {
 | 
						|
            MBED_ASSERT(((ptrdiff_t)tx) % (1 << bitshift) == 0); // <-- if you hit this assert you passed an unaligned pointer to an SPI async transfer
 | 
						|
            configure_dma_transfer_size(handle->Init.DataSize, handle->hdmatx);
 | 
						|
        }
 | 
						|
        if(transfer_type == SPI_TRANSFER_TYPE_TXRX || transfer_type == SPI_TRANSFER_TYPE_RX)
 | 
						|
        {
 | 
						|
            MBED_ASSERT(((ptrdiff_t)rx) % (1 << bitshift) == 0); // <-- if you hit this assert you passed an unaligned pointer to an SPI async transfer
 | 
						|
            configure_dma_transfer_size(handle->Init.DataSize, handle->hdmarx);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    obj->spi.curr_transfer_uses_dma = useDMA;
 | 
						|
#endif
 | 
						|
 | 
						|
    DEBUG_PRINTF("SPI inst=0x%8X Start: type=%u, length=%u, DMA=%d\r\n", (int) handle->Instance, transfer_type, length, !!useDMA);
 | 
						|
 | 
						|
    // Enable the interrupt.  This might be needed even for DMA -- some HAL implementations (e.g. H7) have
 | 
						|
    // the DMA interrupt handler trigger the SPI interrupt.
 | 
						|
    IRQn_Type irq_n = spiobj->spiIRQ;
 | 
						|
    NVIC_ClearPendingIRQ(irq_n);
 | 
						|
    NVIC_SetPriority(irq_n, 1);
 | 
						|
    NVIC_EnableIRQ(irq_n);
 | 
						|
 | 
						|
    // flush FIFO
 | 
						|
#if defined(SPI_FLAG_FRLVL)
 | 
						|
    HAL_SPIEx_FlushRxFifo(handle);
 | 
						|
#endif
 | 
						|
 | 
						|
    // enable the right hal transfer
 | 
						|
    int rc = 0;
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
    // HAL SPI API assumes that SPI disabled between transfers and
 | 
						|
    // doesn't work properly if SPI is enabled.
 | 
						|
    LL_SPI_Disable(SPI_INST(obj));
 | 
						|
#endif
 | 
						|
    switch (transfer_type) {
 | 
						|
        case SPI_TRANSFER_TYPE_TXRX:
 | 
						|
            if(useDMA) {
 | 
						|
                rc = HAL_SPI_TransmitReceive_DMA(handle, (uint8_t *)tx, (uint8_t *)rx, words);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t *) tx, (uint8_t *) rx, words);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case SPI_TRANSFER_TYPE_TX:
 | 
						|
            if (useDMA) {
 | 
						|
                rc = HAL_SPI_Transmit_DMA(handle, (uint8_t *)tx, words);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                rc = HAL_SPI_Transmit_IT(handle, (uint8_t *) tx, words);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case SPI_TRANSFER_TYPE_RX:
 | 
						|
            // the receive function also "transmits" the receive buffer so in order
 | 
						|
            // to guarantee that 0xff is on the line, we explicitly memset it here
 | 
						|
            memset(rx, SPI_FILL_CHAR, length);
 | 
						|
 | 
						|
            if (useDMA) {
 | 
						|
#if defined(STM32_SPI_CAPABILITY_DMA) && defined(__DCACHE_PRESENT)
 | 
						|
                // For chips with a cache (e.g. Cortex-M7), we need to evict the Tx fill data from cache to main memory.
 | 
						|
                // This ensures that the DMA controller can see the most up-to-date copy of the data.
 | 
						|
                SCB_CleanDCache_by_Addr(rx, length);
 | 
						|
#endif
 | 
						|
                rc = HAL_SPI_Receive_DMA(handle, (uint8_t *)rx, words);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                rc = HAL_SPI_Receive_IT(handle, (uint8_t *)rx, words);
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            length = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (rc) {
 | 
						|
#if defined(SPI_IP_VERSION_V2)
 | 
						|
        // enable SPI back in case of error
 | 
						|
        if (handle->Init.Direction != SPI_DIRECTION_1LINE) {
 | 
						|
            LL_SPI_Enable(SPI_INST(obj));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        DEBUG_PRINTF("SPI: RC=%u\n", rc);
 | 
						|
    }
 | 
						|
 | 
						|
    return useDMA;
 | 
						|
}
 | 
						|
 | 
						|
// asynchronous API
 | 
						|
bool spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    // check which use-case we have
 | 
						|
    bool use_tx = (tx != NULL && tx_length > 0);
 | 
						|
    bool use_rx = (rx != NULL && rx_length > 0);
 | 
						|
    const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
 | 
						|
    MBED_ASSERT(bitshift >= 0);
 | 
						|
 | 
						|
    // don't do anything, if the buffers aren't valid
 | 
						|
    if (!use_tx && !use_rx) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // copy the buffers to the SPI object
 | 
						|
    obj->tx_buff.buffer = (void *) tx;
 | 
						|
    obj->tx_buff.length = tx_length;
 | 
						|
    obj->tx_buff.pos = 0;
 | 
						|
    obj->tx_buff.width = 8 << bitshift;
 | 
						|
 | 
						|
    obj->rx_buff.buffer = rx;
 | 
						|
    obj->rx_buff.length = rx_length;
 | 
						|
    obj->rx_buff.pos = 0;
 | 
						|
    obj->rx_buff.width = obj->tx_buff.width;
 | 
						|
 | 
						|
    obj->spi.event = event;
 | 
						|
 | 
						|
    // Register the callback.
 | 
						|
    // It's a function pointer, but it's passed as a uint32_t because of reasons.
 | 
						|
    spiobj->driverCallback = (void (*)(void))handler;
 | 
						|
    DEBUG_PRINTF("SPI: Transfer: tx %u (%u), rx %u (%u)\n", use_tx, tx_length, use_rx, rx_length);
 | 
						|
 | 
						|
    // enable the right hal transfer
 | 
						|
    if (use_tx && use_rx) {
 | 
						|
        // we cannot manage different rx / tx sizes, let's use smaller one
 | 
						|
        size_t size = (tx_length < rx_length) ? tx_length : rx_length;
 | 
						|
        if (tx_length != rx_length) {
 | 
						|
            DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size);
 | 
						|
            obj->tx_buff.length = size;
 | 
						|
            obj->rx_buff.length = size;
 | 
						|
        }
 | 
						|
        return spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size, hint);
 | 
						|
    } else if (use_tx) {
 | 
						|
        return spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length, hint);
 | 
						|
    } else if (use_rx) {
 | 
						|
        return spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length, hint);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t spi_irq_handler_asynch(spi_t *obj)
 | 
						|
{
 | 
						|
    int event = 0;
 | 
						|
    SPI_HandleTypeDef *handle = &(SPI_S(obj)->handle);
 | 
						|
 | 
						|
    if (handle->State == HAL_SPI_STATE_READY) {
 | 
						|
        // When HAL SPI is back to READY state, check if there was an error
 | 
						|
        int error = obj->spi.handle.ErrorCode;
 | 
						|
        if (error != HAL_SPI_ERROR_NONE) {
 | 
						|
            // something went wrong and the transfer has definitely completed
 | 
						|
            event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
 | 
						|
 | 
						|
            if (error & HAL_SPI_ERROR_OVR) {
 | 
						|
                // buffer overrun
 | 
						|
                event |= SPI_EVENT_RX_OVERFLOW;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            // else we're done
 | 
						|
            event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
 | 
						|
        }
 | 
						|
        // disable the interrupt
 | 
						|
        NVIC_DisableIRQ(obj->spi.spiIRQ);
 | 
						|
        NVIC_ClearPendingIRQ(obj->spi.spiIRQ);
 | 
						|
#if !defined(SPI_IP_VERSION_V2)
 | 
						|
        if (handle->Init.Direction == SPI_DIRECTION_1LINE && obj->rx_buff.buffer != NULL) {
 | 
						|
            /**
 | 
						|
             * In case of 3-wire SPI data receiving we usually get dummy reads.
 | 
						|
             * So we need to cleanup FIFO/input register before next transmission.
 | 
						|
             * Probably it's better to set SPI_EVENT_RX_OVERFLOW event flag,
 | 
						|
             * but let's left it as is for backward compatibility.
 | 
						|
             */
 | 
						|
            spi_flush_rx(obj);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        // reset transfer size
 | 
						|
        LL_SPI_SetTransferSize(SPI_INST(obj), 0);
 | 
						|
 | 
						|
        // HAL_SPI_TransmitReceive_IT/HAL_SPI_Transmit_IT/HAL_SPI_Receive_IT
 | 
						|
        // function disable SPI after transfer. So we need enabled it back,
 | 
						|
        // otherwise spi_master_block_write/spi_master_write won't work in 4-wire mode.
 | 
						|
        if (handle->Init.Direction != SPI_DIRECTION_1LINE) {
 | 
						|
            LL_SPI_Enable(SPI_INST(obj));
 | 
						|
        }
 | 
						|
#endif /* SPI_IP_VERSION_V2 */
 | 
						|
    }
 | 
						|
 | 
						|
    return (event & (obj->spi.event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE));
 | 
						|
}
 | 
						|
 | 
						|
// Callback from STM32 HAL when a bidirectional SPI transfer completes (interrupt based or DMA)
 | 
						|
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
 | 
						|
{
 | 
						|
    struct spi_s * spis = get_spis_pointer(hspi);
 | 
						|
    if(spis != NULL)
 | 
						|
    {
 | 
						|
        spis->driverCallback();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Callback from STM32 HAL when a Rx-only SPI transfer completes (interrupt based or DMA)
 | 
						|
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
 | 
						|
{
 | 
						|
    struct spi_s * spis = get_spis_pointer(hspi);
 | 
						|
    if(spis != NULL)
 | 
						|
    {
 | 
						|
        spis->driverCallback();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Callback from STM32 HAL when a Tx-only SPI transfer completes (interrupt based or DMA)
 | 
						|
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
 | 
						|
{
 | 
						|
    struct spi_s * spis = get_spis_pointer(hspi);
 | 
						|
    if(spis != NULL)
 | 
						|
    {
 | 
						|
        spis->driverCallback();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint8_t spi_active(spi_t *obj)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
    HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle);
 | 
						|
 | 
						|
    switch (state) {
 | 
						|
        case HAL_SPI_STATE_RESET:
 | 
						|
        case HAL_SPI_STATE_READY:
 | 
						|
        case HAL_SPI_STATE_ERROR:
 | 
						|
            return 0;
 | 
						|
        default:
 | 
						|
            return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void spi_abort_asynch(spi_t *obj)
 | 
						|
{
 | 
						|
    struct spi_s *spiobj = SPI_S(obj);
 | 
						|
    SPI_HandleTypeDef *handle = &(spiobj->handle);
 | 
						|
 | 
						|
    // disable interrupt if it was enabled
 | 
						|
    IRQn_Type irq_n = spiobj->spiIRQ;
 | 
						|
    NVIC_ClearPendingIRQ(irq_n);
 | 
						|
    NVIC_DisableIRQ(irq_n);
 | 
						|
 | 
						|
    // Use HAL abort function.
 | 
						|
    // Conveniently, this is smart enough to automatically abort the DMA transfer
 | 
						|
    // if DMA was used.
 | 
						|
    HAL_SPI_Abort_IT(handle);
 | 
						|
}
 | 
						|
 | 
						|
#endif //DEVICE_SPI_ASYNCH
 | 
						|
 | 
						|
#endif
 |