mbed-os/targets/TARGET_STM/TARGET_STM32F0/serial_device.c

790 lines
23 KiB
C

/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2017, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#if DEVICE_SERIAL
#include "serial_api_hal.h"
#if defined (TARGET_STM32F031K6)
#define UART_NUM (1)
#elif defined (TARGET_STM32F030R8) || defined (TARGET_STM32F051R8) || defined (TARGET_STM32F042K6)
#define UART_NUM (2)
#elif defined (TARGET_STM32F070RB) || defined (TARGET_STM32F072RB)
#define UART_NUM (4)
#else
#define UART_NUM (8) // max value (TARGET_STM32F091RC)
#endif
uint32_t serial_irq_ids[UART_NUM] = {0};
UART_HandleTypeDef uart_handlers[UART_NUM];
static uart_irq_handler irq_handler;
// Defined in serial_api.c
inline int8_t get_uart_index(UARTName uart_name);
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static void uart_irq(UARTName uart_name)
{
int8_t id = get_uart_index(uart_name);
if (id >= 0) {
UART_HandleTypeDef * huart = &uart_handlers[id];
if (serial_irq_ids[id] != 0) {
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TXE) != RESET) {
if (__HAL_UART_GET_IT(huart, UART_IT_TXE) != RESET) {
irq_handler(serial_irq_ids[id], TxIrq);
}
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) {
if (__HAL_UART_GET_IT(huart, UART_IT_RXNE) != RESET) {
irq_handler(serial_irq_ids[id], RxIrq);
/* Flag has been cleared when reading the content */
}
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
if (__HAL_UART_GET_IT(huart, UART_IT_ORE) != RESET) {
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
}
}
}
}
}
#if defined(USART1_BASE)
static void uart1_irq(void)
{
uart_irq(UART_1);
}
#endif
#if defined(USART2_BASE)
static void uart2_irq(void)
{
uart_irq(UART_2);
}
#endif
// Used for both USART3_4_IRQn and USART3_8_IRQn
static void uart3_8_irq(void)
{
#if defined(TARGET_STM32F091RC)
#if defined(USART3_BASE)
if (__HAL_GET_PENDING_IT(HAL_ITLINE_USART3) != RESET) {
uart_irq(UART_3);
}
#endif
#if defined(USART4_BASE)
if (__HAL_GET_PENDING_IT(HAL_ITLINE_USART4) != RESET) {
uart_irq(UART_4);
}
#endif
#if defined(USART5_BASE)
if (__HAL_GET_PENDING_IT(HAL_ITLINE_USART5) != RESET) {
uart_irq(UART_5);
}
#endif
#if defined(USART6_BASE)
if (__HAL_GET_PENDING_IT(HAL_ITLINE_USART6) != RESET) {
uart_irq(UART_6);
}
#endif
#if defined(USART7_BASE)
if (__HAL_GET_PENDING_IT(HAL_ITLINE_USART7) != RESET) {
uart_irq(UART_7);
}
#endif
#if defined(USART8_BASE)
if (__HAL_GET_PENDING_IT(HAL_ITLINE_USART8) != RESET) {
uart_irq(UART_8);
}
#endif
#else // TARGET_STM32F070RB, TARGET_STM32F072RB
#if defined(USART3_BASE)
if (USART3->ISR & (UART_FLAG_TXE | UART_FLAG_RXNE | UART_FLAG_ORE)) {
uart_irq(UART_3);
}
#endif
#if defined(USART4_BASE)
if (USART4->ISR & (UART_FLAG_TXE | UART_FLAG_RXNE | UART_FLAG_ORE)) {
uart_irq(UART_4);
}
#endif
#endif
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
struct serial_s *obj_s = SERIAL_S(obj);
irq_handler = handler;
serial_irq_ids[obj_s->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
#if defined(USART1_BASE)
if (obj_s->uart == UART_1) {
irq_n = USART1_IRQn;
vector = (uint32_t)&uart1_irq;
}
#endif
#if defined(USART2_BASE)
if (obj_s->uart == UART_2) {
irq_n = USART2_IRQn;
vector = (uint32_t)&uart2_irq;
}
#endif
#if defined(USART3_BASE)
if (obj_s->uart == UART_3) {
#if defined(TARGET_STM32F091RC)
irq_n = USART3_8_IRQn;
#else
irq_n = USART3_4_IRQn;
#endif
vector = (uint32_t)&uart3_8_irq;
}
#endif
#if defined(USART4_BASE)
if (obj_s->uart == UART_4) {
#if defined(TARGET_STM32F091RC)
irq_n = USART3_8_IRQn;
#else
irq_n = USART3_4_IRQn;
#endif
vector = (uint32_t)&uart3_8_irq;
}
#endif
// Below usart are available only on TARGET_STM32F091RC
#if defined(USART5_BASE)
if (obj_s->uart == UART_5) {
irq_n = USART3_8_IRQn;
vector = (uint32_t)&uart3_8_irq;
}
#endif
#if defined(USART6_BASE)
if (obj_s->uart == UART_6) {
irq_n = USART3_8_IRQn;
vector = (uint32_t)&uart3_8_irq;
}
#endif
#if defined(USART7_BASE)
if (obj_s->uart == UART_7) {
irq_n = USART3_8_IRQn;
vector = (uint32_t)&uart3_8_irq;
}
#endif
#if defined(USART8_BASE)
if (obj_s->uart == UART_8) {
irq_n = USART3_8_IRQn;
vector = (uint32_t)&uart3_8_irq;
}
#endif
if (enable) {
if (irq == RxIrq) {
__HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
} else { // TxIrq
__HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
if (irq == RxIrq) {
__HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
// Check if TxIrq is disabled too
if ((huart->Instance->CR1 & USART_CR1_TXEIE) == 0) {
all_disabled = 1;
}
} else { // TxIrq
__HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
// Check if RxIrq is disabled too
if ((huart->Instance->CR1 & USART_CR1_RXNEIE) == 0) {
all_disabled = 1;
}
}
if (all_disabled) {
NVIC_DisableIRQ(irq_n);
}
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
while (!serial_readable(obj));
return (int)(huart->Instance->RDR & (uint16_t)0xFF);
}
void serial_putc(serial_t *obj, int c)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
while (!serial_writable(obj));
huart->Instance->TDR = (uint32_t)(c & (uint16_t)0xFF);
}
void serial_clear(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
huart->TxXferCount = 0;
huart->RxXferCount = 0;
}
void serial_break_set(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart __attribute__((unused)) = &uart_handlers[obj_s->index];
}
#if DEVICE_SERIAL_ASYNCH
/******************************************************************************
* LOCAL HELPER FUNCTIONS
******************************************************************************/
/**
* Configure the TX buffer for an asynchronous write serial transaction
*
* @param obj The serial object.
* @param tx The buffer for sending.
* @param tx_length The number of words to transmit.
*/
static void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width)
{
(void)width;
// Exit if a transmit is already on-going
if (serial_tx_active(obj)) {
return;
}
obj->tx_buff.buffer = tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
}
/**
* Configure the RX buffer for an asynchronous write serial transaction
*
* @param obj The serial object.
* @param tx The buffer for sending.
* @param tx_length The number of words to transmit.
*/
static void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width)
{
(void)width;
// Exit if a reception is already on-going
if (serial_rx_active(obj)) {
return;
}
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
}
/**
* Configure events
*
* @param obj The serial object
* @param event The logical OR of the events to configure
* @param enable Set to non-zero to enable events, or zero to disable them
*/
static void serial_enable_event(serial_t *obj, int event, uint8_t enable)
{
struct serial_s *obj_s = SERIAL_S(obj);
// Shouldn't have to enable interrupt here, just need to keep track of the requested events.
if (enable) {
obj_s->events |= event;
} else {
obj_s->events &= ~event;
}
}
/**
* Get index of serial object TX IRQ, relating it to the physical peripheral.
*
* @param uart_name i.e. UART_1, UART_2, ...
* @return internal NVIC TX IRQ index of U(S)ART peripheral
*/
static IRQn_Type serial_get_irq_n(UARTName uart_name)
{
IRQn_Type irq_n;
switch (uart_name) {
#if defined(USART1_BASE)
case UART_1:
irq_n = USART1_IRQn;
break;
#endif
#if defined(USART2_BASE)
case UART_2:
irq_n = USART2_IRQn;
break;
#endif
#if defined(USART3_BASE)
case UART_3:
#if defined (TARGET_STM32F091RC)
irq_n = USART3_8_IRQn;
#else
irq_n = USART3_4_IRQn;
#endif
break;
#endif
#if defined(USART4_BASE)
case UART_4:
#if defined (TARGET_STM32F091RC)
irq_n = USART3_8_IRQn;
#else
irq_n = USART3_4_IRQn;
#endif
break;
#endif
#if defined(USART5_BASE)
case UART_5:
irq_n = USART3_8_IRQn;
break;
#endif
#if defined(USART6_BASE)
case UART_6:
irq_n = USART3_8_IRQn;
break;
#endif
#if defined(USART7_BASE)
case UART_7:
irq_n = USART3_8_IRQn;
break;
#endif
#if defined(USART8_BASE)
case UART_8:
irq_n = USART3_8_IRQn;
break;
#endif
default:
irq_n = (IRQn_Type)0;
}
return irq_n;
}
/******************************************************************************
* MBED API FUNCTIONS
******************************************************************************/
/**
* Begin asynchronous TX transfer. The used buffer is specified in the serial
* object, tx_buff
*
* @param obj The serial object
* @param tx The buffer for sending
* @param tx_length The number of words to transmit
* @param tx_width The bit width of buffer word
* @param handler The serial handler
* @param event The logical OR of events to be registered
* @param hint A suggestion for how to use DMA with this transfer
* @return Returns number of data transfered, or 0 otherwise
*/
int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
// TODO: DMA usage is currently ignored
(void) hint;
// Check buffer is ok
MBED_ASSERT(tx != (void*)0);
MBED_ASSERT(tx_width == 8); // support only 8b width
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef * huart = &uart_handlers[obj_s->index];
if (tx_length == 0) {
return 0;
}
// Set up buffer
serial_tx_buffer_set(obj, (void *)tx, tx_length, tx_width);
// Set up events
serial_enable_event(obj, SERIAL_EVENT_TX_ALL, 0); // Clear all events
serial_enable_event(obj, event, 1); // Set only the wanted events
// Enable interrupt
IRQn_Type irq_n = serial_get_irq_n(obj_s->uart);
NVIC_ClearPendingIRQ(irq_n);
NVIC_DisableIRQ(irq_n);
NVIC_SetPriority(irq_n, 1);
NVIC_SetVector(irq_n, (uint32_t)handler);
NVIC_EnableIRQ(irq_n);
// the following function will enable UART_IT_TXE and error interrupts
if (HAL_UART_Transmit_IT(huart, (uint8_t*)tx, tx_length) != HAL_OK) {
return 0;
}
return tx_length;
}
/**
* Begin asynchronous RX transfer (enable interrupt for data collecting)
* The used buffer is specified in the serial object, rx_buff
*
* @param obj The serial object
* @param rx The buffer for sending
* @param rx_length The number of words to transmit
* @param rx_width The bit width of buffer word
* @param handler The serial handler
* @param event The logical OR of events to be registered
* @param handler The serial handler
* @param char_match A character in range 0-254 to be matched
* @param hint A suggestion for how to use DMA with this transfer
*/
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
{
// TODO: DMA usage is currently ignored
(void) hint;
/* Sanity check arguments */
MBED_ASSERT(obj);
MBED_ASSERT(rx != (void*)0);
MBED_ASSERT(rx_width == 8); // support only 8b width
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
serial_enable_event(obj, SERIAL_EVENT_RX_ALL, 0);
serial_enable_event(obj, event, 1);
// set CharMatch
obj->char_match = char_match;
serial_rx_buffer_set(obj, rx, rx_length, rx_width);
IRQn_Type irq_n = serial_get_irq_n(obj_s->uart);
NVIC_ClearPendingIRQ(irq_n);
NVIC_DisableIRQ(irq_n);
NVIC_SetPriority(irq_n, 0);
NVIC_SetVector(irq_n, (uint32_t)handler);
NVIC_EnableIRQ(irq_n);
// following HAL function will enable the RXNE interrupt + error interrupts
HAL_UART_Receive_IT(huart, (uint8_t*)rx, rx_length);
}
/**
* Attempts to determine if the serial peripheral is already in use for TX
*
* @param obj The serial object
* @return Non-zero if the TX transaction is ongoing, 0 otherwise
*/
uint8_t serial_tx_active(serial_t *obj)
{
MBED_ASSERT(obj);
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_TX) ? 1 : 0);
}
/**
* Attempts to determine if the serial peripheral is already in use for RX
*
* @param obj The serial object
* @return Non-zero if the RX transaction is ongoing, 0 otherwise
*/
uint8_t serial_rx_active(serial_t *obj)
{
MBED_ASSERT(obj);
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_RX) ? 1 : 0);
}
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) {
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF);
}
}
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) {
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_NE) != RESET) {
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
}
}
/**
* The asynchronous TX and RX handler.
*
* @param obj The serial object
* @return Returns event flags if a TX/RX transfer termination condition was met or 0 otherwise
*/
int serial_irq_handler_asynch(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
volatile int return_event = 0;
uint8_t *buf = (uint8_t*)(obj->rx_buff.buffer);
uint8_t i = 0;
// TX PART:
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) {
// Return event SERIAL_EVENT_TX_COMPLETE if requested
if ((obj_s->events & SERIAL_EVENT_TX_COMPLETE ) != 0) {
return_event |= (SERIAL_EVENT_TX_COMPLETE & obj_s->events);
}
}
}
// Handle error events
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
if (__HAL_UART_GET_IT(huart, UART_IT_PE) != RESET) {
return_event |= (SERIAL_EVENT_RX_PARITY_ERROR & obj_s->events);
}
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
if (__HAL_UART_GET_IT(huart, UART_IT_FE) != RESET) {
return_event |= (SERIAL_EVENT_RX_FRAMING_ERROR & obj_s->events);
}
}
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
if (__HAL_UART_GET_IT(huart, UART_IT_ORE) != RESET) {
return_event |= (SERIAL_EVENT_RX_OVERRUN_ERROR & obj_s->events);
}
}
HAL_UART_IRQHandler(huart);
// Abort if an error occurs
if ((return_event & SERIAL_EVENT_RX_PARITY_ERROR) ||
(return_event & SERIAL_EVENT_RX_FRAMING_ERROR) ||
(return_event & SERIAL_EVENT_RX_OVERRUN_ERROR)) {
return return_event;
}
//RX PART
if (huart->RxXferSize != 0) {
obj->rx_buff.pos = huart->RxXferSize - huart->RxXferCount;
}
if ((huart->RxXferCount == 0) && (obj->rx_buff.pos >= (obj->rx_buff.length - 1))) {
return_event |= (SERIAL_EVENT_RX_COMPLETE & obj_s->events);
}
// Check if char_match is present
if (obj_s->events & SERIAL_EVENT_RX_CHARACTER_MATCH) {
if (buf != NULL) {
for (i = 0; i < obj->rx_buff.pos; i++) {
if (buf[i] == obj->char_match) {
obj->rx_buff.pos = i;
return_event |= (SERIAL_EVENT_RX_CHARACTER_MATCH & obj_s->events);
serial_rx_abort_asynch(obj);
break;
}
}
}
}
return return_event;
}
/**
* Abort the ongoing TX transaction. It disables the enabled interupt for TX and
* flush TX hardware buffer if TX FIFO is used
*
* @param obj The serial object
*/
void serial_tx_abort_asynch(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
__HAL_UART_DISABLE_IT(huart, UART_IT_TC);
__HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
// clear flags
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF);
// reset states
huart->TxXferCount = 0;
// update handle state
if(huart->gState == HAL_UART_STATE_BUSY_TX_RX) {
huart->gState = HAL_UART_STATE_BUSY_RX;
} else {
huart->gState = HAL_UART_STATE_READY;
}
}
/**
* Abort the ongoing RX transaction It disables the enabled interrupt for RX and
* flush RX hardware buffer if RX FIFO is used
*
* @param obj The serial object
*/
void serial_rx_abort_asynch(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
// disable interrupts
__HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
__HAL_UART_DISABLE_IT(huart, UART_IT_PE);
__HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
// clear flags
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF | UART_CLEAR_FEF | UART_CLEAR_OREF);
volatile uint32_t tmpval __attribute__((unused)) = huart->Instance->RDR; // Clear RXNE flag
// reset states
huart->RxXferCount = 0;
// update handle state
if(huart->RxState == HAL_UART_STATE_BUSY_TX_RX) {
huart->RxState = HAL_UART_STATE_BUSY_TX;
} else {
huart->RxState = HAL_UART_STATE_READY;
}
}
#endif /* DEVICE_SERIAL_ASYNCH */
#if DEVICE_SERIAL_FC
/**
* Set HW Control Flow
* @param obj The serial object
* @param type The Control Flow type (FlowControlNone, FlowControlRTS, FlowControlCTS, FlowControlRTSCTS)
* @param rxflow Pin for the rxflow
* @param txflow Pin for the txflow
*/
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
struct serial_s *obj_s = SERIAL_S(obj);
// Determine the UART to use (UART_1, UART_2, ...)
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
// Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
obj_s->uart = (UARTName)pinmap_merge(uart_cts, uart_rts);
MBED_ASSERT(obj_s->uart != (UARTName)NC);
if(type == FlowControlNone) {
// Disable hardware flow control
obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
}
if (type == FlowControlRTS) {
// Enable RTS
MBED_ASSERT(uart_rts != (UARTName)NC);
obj_s->hw_flow_ctl = UART_HWCONTROL_RTS;
obj_s->pin_rts = rxflow;
// Enable the pin for RTS function
pinmap_pinout(rxflow, PinMap_UART_RTS);
}
if (type == FlowControlCTS) {
// Enable CTS
MBED_ASSERT(uart_cts != (UARTName)NC);
obj_s->hw_flow_ctl = UART_HWCONTROL_CTS;
obj_s->pin_cts = txflow;
// Enable the pin for CTS function
pinmap_pinout(txflow, PinMap_UART_CTS);
}
if (type == FlowControlRTSCTS) {
// Enable CTS & RTS
MBED_ASSERT(uart_rts != (UARTName)NC);
MBED_ASSERT(uart_cts != (UARTName)NC);
obj_s->hw_flow_ctl = UART_HWCONTROL_RTS_CTS;
obj_s->pin_rts = rxflow;
obj_s->pin_cts = txflow;
// Enable the pin for CTS function
pinmap_pinout(txflow, PinMap_UART_CTS);
// Enable the pin for RTS function
pinmap_pinout(rxflow, PinMap_UART_RTS);
}
init_uart(obj);
}
#endif /* DEVICE_SERIAL_FC */
#endif /* DEVICE_SERIAL */