mbed-os/cmsis/core_caFunc.h

1445 lines
40 KiB
C

/**************************************************************************//**
* @file core_caFunc.h
* @brief CMSIS Cortex-A Core Function Access Header File
* @version V3.10
* @date 30 Oct 2013
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2013 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#ifndef __CORE_CAFUNC_H__
#define __CORE_CAFUNC_H__
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
#define MODE_USR 0x10
#define MODE_FIQ 0x11
#define MODE_IRQ 0x12
#define MODE_SVC 0x13
#define MODE_MON 0x16
#define MODE_ABT 0x17
#define MODE_HYP 0x1A
#define MODE_UND 0x1B
#define MODE_SYS 0x1F
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/** \brief Get CPSR Register
This function returns the content of the CPSR Register.
\return CPSR Register value
*/
__STATIC_INLINE uint32_t __get_CPSR(void)
{
register uint32_t __regCPSR __ASM("cpsr");
return(__regCPSR);
}
/** \brief Set Stack Pointer
This function assigns the given value to the current stack pointer.
\param [in] topOfStack Stack Pointer value to set
*/
register uint32_t __regSP __ASM("sp");
__STATIC_INLINE void __set_SP(uint32_t topOfStack)
{
__regSP = topOfStack;
}
/** \brief Get link register
This function returns the value of the link register
\return Value of link register
*/
register uint32_t __reglr __ASM("lr");
__STATIC_INLINE uint32_t __get_LR(void)
{
return(__reglr);
}
/** \brief Set link register
This function sets the value of the link register
\param [in] lr LR value to set
*/
__STATIC_INLINE void __set_LR(uint32_t lr)
{
__reglr = lr;
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the USR/SYS Stack Pointer (PSP).
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
__STATIC_ASM void __set_PSP(uint32_t topOfProcStack)
{
ARM
PRESERVE8
BIC R0, R0, #7 ;ensure stack is 8-byte aligned
MRS R1, CPSR
CPS #MODE_SYS ;no effect in USR mode
MOV SP, R0
MSR CPSR_c, R1 ;no effect in USR mode
ISB
BX LR
}
/** \brief Set User Mode
This function changes the processor state to User Mode
*/
__STATIC_ASM void __set_CPS_USR(void)
{
ARM
CPS #MODE_USR
BX LR
}
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#endif
}
/** \brief Get FPEXC
This function returns the current value of the Floating Point Exception Control register.
\return Floating Point Exception Control register value
*/
__STATIC_INLINE uint32_t __get_FPEXC(void)
{
#if (__FPU_PRESENT == 1)
register uint32_t __regfpexc __ASM("fpexc");
return(__regfpexc);
#else
return(0);
#endif
}
/** \brief Set FPEXC
This function assigns the given value to the Floating Point Exception Control register.
\param [in] fpscr Floating Point Exception Control value to set
*/
__STATIC_INLINE void __set_FPEXC(uint32_t fpexc)
{
#if (__FPU_PRESENT == 1)
register uint32_t __regfpexc __ASM("fpexc");
__regfpexc = (fpexc);
#endif
}
/** \brief Get CPACR
This function returns the current value of the Coprocessor Access Control register.
\return Coprocessor Access Control register value
*/
__STATIC_INLINE uint32_t __get_CPACR(void)
{
register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
return __regCPACR;
}
/** \brief Set CPACR
This function assigns the given value to the Coprocessor Access Control register.
\param [in] cpacr Coprocessor Acccess Control value to set
*/
__STATIC_INLINE void __set_CPACR(uint32_t cpacr)
{
register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
__regCPACR = cpacr;
__ISB();
}
/** \brief Get CBAR
This function returns the value of the Configuration Base Address register.
\return Configuration Base Address register value
*/
__STATIC_INLINE uint32_t __get_CBAR() {
register uint32_t __regCBAR __ASM("cp15:4:c15:c0:0");
return(__regCBAR);
}
/** \brief Get TTBR0
This function returns the value of the Translation Table Base Register 0.
\return Translation Table Base Register 0 value
*/
__STATIC_INLINE uint32_t __get_TTBR0() {
register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
return(__regTTBR0);
}
/** \brief Set TTBR0
This function assigns the given value to the Translation Table Base Register 0.
\param [in] ttbr0 Translation Table Base Register 0 value to set
*/
__STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) {
register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
__regTTBR0 = ttbr0;
__ISB();
}
/** \brief Get DACR
This function returns the value of the Domain Access Control Register.
\return Domain Access Control Register value
*/
__STATIC_INLINE uint32_t __get_DACR() {
register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
return(__regDACR);
}
/** \brief Set DACR
This function assigns the given value to the Domain Access Control Register.
\param [in] dacr Domain Access Control Register value to set
*/
__STATIC_INLINE void __set_DACR(uint32_t dacr) {
register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
__regDACR = dacr;
__ISB();
}
/******************************** Cache and BTAC enable ****************************************************/
/** \brief Set SCTLR
This function assigns the given value to the System Control Register.
\param [in] sctlr System Control Register value to set
*/
__STATIC_INLINE void __set_SCTLR(uint32_t sctlr)
{
register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
__regSCTLR = sctlr;
}
/** \brief Get SCTLR
This function returns the value of the System Control Register.
\return System Control Register value
*/
__STATIC_INLINE uint32_t __get_SCTLR() {
register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
return(__regSCTLR);
}
/** \brief Enable Caches
Enable Caches
*/
__STATIC_INLINE void __enable_caches(void) {
// Set I bit 12 to enable I Cache
// Set C bit 2 to enable D Cache
__set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2));
}
/** \brief Disable Caches
Disable Caches
*/
__STATIC_INLINE void __disable_caches(void) {
// Clear I bit 12 to disable I Cache
// Clear C bit 2 to disable D Cache
__set_SCTLR( __get_SCTLR() & ~(1 << 12) & ~(1 << 2));
__ISB();
}
/** \brief Enable BTAC
Enable BTAC
*/
__STATIC_INLINE void __enable_btac(void) {
// Set Z bit 11 to enable branch prediction
__set_SCTLR( __get_SCTLR() | (1 << 11));
__ISB();
}
/** \brief Disable BTAC
Disable BTAC
*/
__STATIC_INLINE void __disable_btac(void) {
// Clear Z bit 11 to disable branch prediction
__set_SCTLR( __get_SCTLR() & ~(1 << 11));
}
/** \brief Enable MMU
Enable MMU
*/
__STATIC_INLINE void __enable_mmu(void) {
// Set M bit 0 to enable the MMU
// Set AFE bit to enable simplified access permissions model
// Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
__set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
__ISB();
}
/** \brief Disable MMU
Disable MMU
*/
__STATIC_INLINE void __disable_mmu(void) {
// Clear M bit 0 to disable the MMU
__set_SCTLR( __get_SCTLR() & ~1);
__ISB();
}
/******************************** TLB maintenance operations ************************************************/
/** \brief Invalidate the whole tlb
TLBIALL. Invalidate the whole tlb
*/
__STATIC_INLINE void __ca9u_inv_tlb_all(void) {
register uint32_t __TLBIALL __ASM("cp15:0:c8:c7:0");
__TLBIALL = 0;
__DSB();
__ISB();
}
/******************************** BTB maintenance operations ************************************************/
/** \brief Invalidate entire branch predictor array
BPIALL. Branch Predictor Invalidate All.
*/
__STATIC_INLINE void __v7_inv_btac(void) {
register uint32_t __BPIALL __ASM("cp15:0:c7:c5:6");
__BPIALL = 0;
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new state
}
/******************************** L1 cache operations ******************************************************/
/** \brief Invalidate the whole I$
ICIALLU. Instruction Cache Invalidate All to PoU
*/
__STATIC_INLINE void __v7_inv_icache_all(void) {
register uint32_t __ICIALLU __ASM("cp15:0:c7:c5:0");
__ICIALLU = 0;
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new I cache state
}
/** \brief Clean D$ by MVA
DCCMVAC. Data cache clean by MVA to PoC
*/
__STATIC_INLINE void __v7_clean_dcache_mva(void *va) {
register uint32_t __DCCMVAC __ASM("cp15:0:c7:c10:1");
__DCCMVAC = (uint32_t)va;
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Invalidate D$ by MVA
DCIMVAC. Data cache invalidate by MVA to PoC
*/
__STATIC_INLINE void __v7_inv_dcache_mva(void *va) {
register uint32_t __DCIMVAC __ASM("cp15:0:c7:c6:1");
__DCIMVAC = (uint32_t)va;
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Clean and Invalidate D$ by MVA
DCCIMVAC. Data cache clean and invalidate by MVA to PoC
*/
__STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) {
register uint32_t __DCCIMVAC __ASM("cp15:0:c7:c14:1");
__DCCIMVAC = (uint32_t)va;
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Clean and Invalidate the entire data or unified cache
Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency.
*/
#pragma push
#pragma arm
__STATIC_ASM void __v7_all_cache(uint32_t op) {
ARM
PUSH {R4-R11}
MRC p15, 1, R6, c0, c0, 1 // Read CLIDR
ANDS R3, R6, #0x07000000 // Extract coherency level
MOV R3, R3, LSR #23 // Total cache levels << 1
BEQ Finished // If 0, no need to clean
MOV R10, #0 // R10 holds current cache level << 1
Loop1 ADD R2, R10, R10, LSR #1 // R2 holds cache "Set" position
MOV R1, R6, LSR R2 // Bottom 3 bits are the Cache-type for this level
AND R1, R1, #7 // Isolate those lower 3 bits
CMP R1, #2
BLT Skip // No cache or only instruction cache at this level
MCR p15, 2, R10, c0, c0, 0 // Write the Cache Size selection register
ISB // ISB to sync the change to the CacheSizeID reg
MRC p15, 1, R1, c0, c0, 0 // Reads current Cache Size ID register
AND R2, R1, #7 // Extract the line length field
ADD R2, R2, #4 // Add 4 for the line length offset (log2 16 bytes)
LDR R4, =0x3FF
ANDS R4, R4, R1, LSR #3 // R4 is the max number on the way size (right aligned)
CLZ R5, R4 // R5 is the bit position of the way size increment
LDR R7, =0x7FFF
ANDS R7, R7, R1, LSR #13 // R7 is the max number of the index size (right aligned)
Loop2 MOV R9, R4 // R9 working copy of the max way size (right aligned)
Loop3 ORR R11, R10, R9, LSL R5 // Factor in the Way number and cache number into R11
ORR R11, R11, R7, LSL R2 // Factor in the Set number
CMP R0, #0
BNE Dccsw
MCR p15, 0, R11, c7, c6, 2 // DCISW. Invalidate by Set/Way
B cont
Dccsw CMP R0, #1
BNE Dccisw
MCR p15, 0, R11, c7, c10, 2 // DCCSW. Clean by Set/Way
B cont
Dccisw MCR p15, 0, R11, c7, c14, 2 // DCCISW. Clean and Invalidate by Set/Way
cont SUBS R9, R9, #1 // Decrement the Way number
BGE Loop3
SUBS R7, R7, #1 // Decrement the Set number
BGE Loop2
Skip ADD R10, R10, #2 // Increment the cache number
CMP R3, R10
BGT Loop1
Finished
DSB
POP {R4-R11}
BX lr
}
#pragma pop
/** \brief Invalidate the whole D$
DCISW. Invalidate by Set/Way
*/
__STATIC_INLINE void __v7_inv_dcache_all(void) {
__v7_all_cache(0);
}
/** \brief Clean the whole D$
DCCSW. Clean by Set/Way
*/
__STATIC_INLINE void __v7_clean_dcache_all(void) {
__v7_all_cache(1);
}
/** \brief Clean and invalidate the whole D$
DCCISW. Clean and Invalidate by Set/Way
*/
__STATIC_INLINE void __v7_clean_inv_dcache_all(void) {
__v7_all_cache(2);
}
#include "core_ca_mmu.h"
#elif (defined (__ICCARM__)) /*---------------- ICC Compiler ---------------------*/
#define __inline inline
inline static uint32_t __disable_irq_iar() {
int irq_dis = __get_CPSR() & 0x80; // 7bit CPSR.I
__disable_irq();
return irq_dis;
}
#define MODE_USR 0x10
#define MODE_FIQ 0x11
#define MODE_IRQ 0x12
#define MODE_SVC 0x13
#define MODE_MON 0x16
#define MODE_ABT 0x17
#define MODE_HYP 0x1A
#define MODE_UND 0x1B
#define MODE_SYS 0x1F
/** \brief Set Process Stack Pointer
This function assigns the given value to the USR/SYS Stack Pointer (PSP).
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
// from rt_CMSIS.c
__arm static inline void __set_PSP(uint32_t topOfProcStack) {
__asm(
" ARM\n"
// " PRESERVE8\n"
" BIC R0, R0, #7 ;ensure stack is 8-byte aligned \n"
" MRS R1, CPSR \n"
" CPS #0x1F ;no effect in USR mode \n" // MODE_SYS
" MOV SP, R0 \n"
" MSR CPSR_c, R1 ;no effect in USR mode \n"
" ISB \n"
" BX LR \n");
}
/** \brief Set User Mode
This function changes the processor state to User Mode
*/
// from rt_CMSIS.c
__arm static inline void __set_CPS_USR(void) {
__asm(
" ARM \n"
" CPS #0x10 \n" // MODE_USR
" BX LR\n");
}
/** \brief Set TTBR0
This function assigns the given value to the Translation Table Base Register 0.
\param [in] ttbr0 Translation Table Base Register 0 value to set
*/
// from mmu_Renesas_RZ_A1.c
__STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) {
__MCR(15, 0, ttbr0, 2, 0, 0); // reg to cp15
__ISB();
}
/** \brief Set DACR
This function assigns the given value to the Domain Access Control Register.
\param [in] dacr Domain Access Control Register value to set
*/
// from mmu_Renesas_RZ_A1.c
__STATIC_INLINE void __set_DACR(uint32_t dacr) {
__MCR(15, 0, dacr, 3, 0, 0); // reg to cp15
__ISB();
}
/******************************** Cache and BTAC enable ****************************************************/
/** \brief Set SCTLR
This function assigns the given value to the System Control Register.
\param [in] sctlr System Control Register value to set
*/
// from __enable_mmu()
__STATIC_INLINE void __set_SCTLR(uint32_t sctlr) {
__MCR(15, 0, sctlr, 1, 0, 0); // reg to cp15
}
/** \brief Get SCTLR
This function returns the value of the System Control Register.
\return System Control Register value
*/
// from __enable_mmu()
__STATIC_INLINE uint32_t __get_SCTLR() {
uint32_t __regSCTLR = __MRC(15, 0, 1, 0, 0);
return __regSCTLR;
}
/** \brief Enable Caches
Enable Caches
*/
// from system_Renesas_RZ_A1.c
__STATIC_INLINE void __enable_caches(void) {
__set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2));
}
/** \brief Enable BTAC
Enable BTAC
*/
// from system_Renesas_RZ_A1.c
__STATIC_INLINE void __enable_btac(void) {
__set_SCTLR( __get_SCTLR() | (1 << 11));
__ISB();
}
/** \brief Enable MMU
Enable MMU
*/
// from system_Renesas_RZ_A1.c
__STATIC_INLINE void __enable_mmu(void) {
// Set M bit 0 to enable the MMU
// Set AFE bit to enable simplified access permissions model
// Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
__set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
__ISB();
}
/******************************** TLB maintenance operations ************************************************/
/** \brief Invalidate the whole tlb
TLBIALL. Invalidate the whole tlb
*/
// from system_Renesas_RZ_A1.c
__STATIC_INLINE void __ca9u_inv_tlb_all(void) {
uint32_t val = 0;
__MCR(15, 0, val, 8, 7, 0); // reg to cp15
__MCR(15, 0, val, 8, 6, 0); // reg to cp15
__MCR(15, 0, val, 8, 5, 0); // reg to cp15
__DSB();
__ISB();
}
/******************************** BTB maintenance operations ************************************************/
/** \brief Invalidate entire branch predictor array
BPIALL. Branch Predictor Invalidate All.
*/
// from system_Renesas_RZ_A1.c
__STATIC_INLINE void __v7_inv_btac(void) {
uint32_t val = 0;
__MCR(15, 0, val, 7, 5, 6); // reg to cp15
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new state
}
/******************************** L1 cache operations ******************************************************/
/** \brief Invalidate the whole I$
ICIALLU. Instruction Cache Invalidate All to PoU
*/
// from system_Renesas_RZ_A1.c
__STATIC_INLINE void __v7_inv_icache_all(void) {
uint32_t val = 0;
__MCR(15, 0, val, 7, 5, 0); // reg to cp15
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new I cache state
}
// from __v7_inv_dcache_all()
__arm static inline void __v7_all_cache(uint32_t op) {
__asm(
" ARM \n"
" PUSH {R4-R11} \n"
" MRC p15, 1, R6, c0, c0, 1\n" // Read CLIDR
" ANDS R3, R6, #0x07000000\n" // Extract coherency level
" MOV R3, R3, LSR #23\n" // Total cache levels << 1
" BEQ Finished\n" // If 0, no need to clean
" MOV R10, #0\n" // R10 holds current cache level << 1
"Loop1: ADD R2, R10, R10, LSR #1\n" // R2 holds cache "Set" position
" MOV R1, R6, LSR R2 \n" // Bottom 3 bits are the Cache-type for this level
" AND R1, R1, #7 \n" // Isolate those lower 3 bits
" CMP R1, #2 \n"
" BLT Skip \n" // No cache or only instruction cache at this level
" MCR p15, 2, R10, c0, c0, 0 \n" // Write the Cache Size selection register
" ISB \n" // ISB to sync the change to the CacheSizeID reg
" MRC p15, 1, R1, c0, c0, 0 \n" // Reads current Cache Size ID register
" AND R2, R1, #7 \n" // Extract the line length field
" ADD R2, R2, #4 \n" // Add 4 for the line length offset (log2 16 bytes)
" movw R4, #0x3FF \n"
" ANDS R4, R4, R1, LSR #3 \n" // R4 is the max number on the way size (right aligned)
" CLZ R5, R4 \n" // R5 is the bit position of the way size increment
" movw R7, #0x7FFF \n"
" ANDS R7, R7, R1, LSR #13 \n" // R7 is the max number of the index size (right aligned)
"Loop2: MOV R9, R4 \n" // R9 working copy of the max way size (right aligned)
"Loop3: ORR R11, R10, R9, LSL R5 \n" // Factor in the Way number and cache number into R11
" ORR R11, R11, R7, LSL R2 \n" // Factor in the Set number
" CMP R0, #0 \n"
" BNE Dccsw \n"
" MCR p15, 0, R11, c7, c6, 2 \n" // DCISW. Invalidate by Set/Way
" B cont \n"
"Dccsw: CMP R0, #1 \n"
" BNE Dccisw \n"
" MCR p15, 0, R11, c7, c10, 2 \n" // DCCSW. Clean by Set/Way
" B cont \n"
"Dccisw: MCR p15, 0, R11, c7, c14, 2 \n" // DCCISW, Clean and Invalidate by Set/Way
"cont: SUBS R9, R9, #1 \n" // Decrement the Way number
" BGE Loop3 \n"
" SUBS R7, R7, #1 \n" // Decrement the Set number
" BGE Loop2 \n"
"Skip: ADD R10, R10, #2 \n" // increment the cache number
" CMP R3, R10 \n"
" BGT Loop1 \n"
"Finished: \n"
" DSB \n"
" POP {R4-R11} \n"
" BX lr \n" );
}
/** \brief Invalidate the whole D$
DCISW. Invalidate by Set/Way
*/
// from system_Renesas_RZ_A1.c
__STATIC_INLINE void __v7_inv_dcache_all(void) {
__v7_all_cache(0);
}
/** \brief Clean the whole D$
DCCSW. Clean by Set/Way
*/
__STATIC_INLINE void __v7_clean_dcache_all(void) {
__v7_all_cache(1);
}
/** \brief Clean and invalidate the whole D$
DCCISW. Clean and Invalidate by Set/Way
*/
__STATIC_INLINE void __v7_clean_inv_dcache_all(void) {
__v7_all_cache(2);
}
/** \brief Clean and Invalidate D$ by MVA
DCCIMVAC. Data cache clean and invalidate by MVA to PoC
*/
__STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) {
__MCR(15, 0, (uint32_t)va, 7, 14, 1);
__DMB();
}
#include "core_ca_mmu.h"
#elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
#define MODE_USR 0x10
#define MODE_FIQ 0x11
#define MODE_IRQ 0x12
#define MODE_SVC 0x13
#define MODE_MON 0x16
#define MODE_ABT 0x17
#define MODE_HYP 0x1A
#define MODE_UND 0x1B
#define MODE_SYS 0x1F
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i");
}
/** \brief Disable IRQ Interrupts
This function disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __disable_irq(void)
{
uint32_t result;
__ASM volatile ("mrs %0, cpsr" : "=r" (result));
__ASM volatile ("cpsid i");
return(result & 0x80);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
{
#if 1
register uint32_t __regAPSR;
__ASM volatile ("mrs %0, apsr" : "=r" (__regAPSR) );
#else
register uint32_t __regAPSR __ASM("apsr");
#endif
return(__regAPSR);
}
/** \brief Get CPSR Register
This function returns the content of the CPSR Register.
\return CPSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CPSR(void)
{
#if 1
register uint32_t __regCPSR;
__ASM volatile ("mrs %0, cpsr" : "=r" (__regCPSR));
#else
register uint32_t __regCPSR __ASM("cpsr");
#endif
return(__regCPSR);
}
#if 0
/** \brief Set Stack Pointer
This function assigns the given value to the current stack pointer.
\param [in] topOfStack Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_SP(uint32_t topOfStack)
{
register uint32_t __regSP __ASM("sp");
__regSP = topOfStack;
}
#endif
/** \brief Get link register
This function returns the value of the link register
\return Value of link register
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_LR(void)
{
register uint32_t __reglr __ASM("lr");
return(__reglr);
}
#if 0
/** \brief Set link register
This function sets the value of the link register
\param [in] lr LR value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_LR(uint32_t lr)
{
register uint32_t __reglr __ASM("lr");
__reglr = lr;
}
#endif
/** \brief Set Process Stack Pointer
This function assigns the given value to the USR/SYS Stack Pointer (PSP).
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
__asm__ volatile (
".ARM;"
".eabi_attribute Tag_ABI_align8_preserved,1;"
"BIC R0, R0, #7;" /* ;ensure stack is 8-byte aligned */
"MRS R1, CPSR;"
"CPS %0;" /* ;no effect in USR mode */
"MOV SP, R0;"
"MSR CPSR_c, R1;" /* ;no effect in USR mode */
"ISB;"
//"BX LR;"
:
: "i"(MODE_SYS)
: "r0", "r1");
return;
}
/** \brief Set User Mode
This function changes the processor state to User Mode
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CPS_USR(void)
{
__asm__ volatile (
".ARM;"
"CPS %0;"
//"BX LR;"
:
: "i"(MODE_USR)
: );
return;
}
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq() __asm__ volatile ("cpsie f")
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq() __asm__ volatile ("cpsid f")
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
#if 1
uint32_t result;
__ASM volatile ("vmrs %0, fpscr" : "=r" (result) );
return (result);
#else
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#endif
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
#if 1
__ASM volatile ("vmsr fpscr, %0" : : "r" (fpscr) );
#else
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#endif
#endif
}
/** \brief Get FPEXC
This function returns the current value of the Floating Point Exception Control register.
\return Floating Point Exception Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPEXC(void)
{
#if (__FPU_PRESENT == 1)
#if 1
uint32_t result;
__ASM volatile ("vmrs %0, fpexc" : "=r" (result));
return (result);
#else
register uint32_t __regfpexc __ASM("fpexc");
return(__regfpexc);
#endif
#else
return(0);
#endif
}
/** \brief Set FPEXC
This function assigns the given value to the Floating Point Exception Control register.
\param [in] fpscr Floating Point Exception Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPEXC(uint32_t fpexc)
{
#if (__FPU_PRESENT == 1)
#if 1
__ASM volatile ("vmsr fpexc, %0" : : "r" (fpexc));
#else
register uint32_t __regfpexc __ASM("fpexc");
__regfpexc = (fpexc);
#endif
#endif
}
/** \brief Get CPACR
This function returns the current value of the Coprocessor Access Control register.
\return Coprocessor Access Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CPACR(void)
{
#if 1
register uint32_t __regCPACR;
__ASM volatile ("mrc p15, 0, %0, c1, c0, 2" : "=r" (__regCPACR));
#else
register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
#endif
return __regCPACR;
}
/** \brief Set CPACR
This function assigns the given value to the Coprocessor Access Control register.
\param [in] cpacr Coprocessor Acccess Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CPACR(uint32_t cpacr)
{
#if 1
__ASM volatile ("mcr p15, 0, %0, c1, c0, 2" : : "r" (cpacr));
#else
register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
__regCPACR = cpacr;
#endif
__ISB();
}
/** \brief Get CBAR
This function returns the value of the Configuration Base Address register.
\return Configuration Base Address register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CBAR() {
#if 1
register uint32_t __regCBAR;
__ASM volatile ("mrc p15, 4, %0, c15, c0, 0" : "=r" (__regCBAR));
#else
register uint32_t __regCBAR __ASM("cp15:4:c15:c0:0");
#endif
return(__regCBAR);
}
/** \brief Get TTBR0
This function returns the value of the Translation Table Base Register 0.
\return Translation Table Base Register 0 value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_TTBR0() {
#if 1
register uint32_t __regTTBR0;
__ASM volatile ("mrc p15, 0, %0, c2, c0, 0" : "=r" (__regTTBR0));
#else
register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
#endif
return(__regTTBR0);
}
/** \brief Set TTBR0
This function assigns the given value to the Translation Table Base Register 0.
\param [in] ttbr0 Translation Table Base Register 0 value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c2, c0, 0" : : "r" (ttbr0));
#else
register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
__regTTBR0 = ttbr0;
#endif
__ISB();
}
/** \brief Get DACR
This function returns the value of the Domain Access Control Register.
\return Domain Access Control Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_DACR() {
#if 1
register uint32_t __regDACR;
__ASM volatile ("mrc p15, 0, %0, c3, c0, 0" : "=r" (__regDACR));
#else
register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
#endif
return(__regDACR);
}
/** \brief Set DACR
This function assigns the given value to the Domain Access Control Register.
\param [in] dacr Domain Access Control Register value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_DACR(uint32_t dacr) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c3, c0, 0" : : "r" (dacr));
#else
register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
__regDACR = dacr;
#endif
__ISB();
}
/******************************** Cache and BTAC enable ****************************************************/
/** \brief Set SCTLR
This function assigns the given value to the System Control Register.
\param [in] sctlr System Control Register value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_SCTLR(uint32_t sctlr)
{
#if 1
__ASM volatile ("mcr p15, 0, %0, c1, c0, 0" : : "r" (sctlr));
#else
register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
__regSCTLR = sctlr;
#endif
}
/** \brief Get SCTLR
This function returns the value of the System Control Register.
\return System Control Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_SCTLR() {
#if 1
register uint32_t __regSCTLR;
__ASM volatile ("mrc p15, 0, %0, c1, c0, 0" : "=r" (__regSCTLR));
#else
register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
#endif
return(__regSCTLR);
}
/** \brief Enable Caches
Enable Caches
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_caches(void) {
// Set I bit 12 to enable I Cache
// Set C bit 2 to enable D Cache
__set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2));
}
/** \brief Disable Caches
Disable Caches
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_caches(void) {
// Clear I bit 12 to disable I Cache
// Clear C bit 2 to disable D Cache
__set_SCTLR( __get_SCTLR() & ~(1 << 12) & ~(1 << 2));
__ISB();
}
/** \brief Enable BTAC
Enable BTAC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_btac(void) {
// Set Z bit 11 to enable branch prediction
__set_SCTLR( __get_SCTLR() | (1 << 11));
__ISB();
}
/** \brief Disable BTAC
Disable BTAC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_btac(void) {
// Clear Z bit 11 to disable branch prediction
__set_SCTLR( __get_SCTLR() & ~(1 << 11));
}
/** \brief Enable MMU
Enable MMU
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_mmu(void) {
// Set M bit 0 to enable the MMU
// Set AFE bit to enable simplified access permissions model
// Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
__set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
__ISB();
}
/** \brief Disable MMU
Disable MMU
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_mmu(void) {
// Clear M bit 0 to disable the MMU
__set_SCTLR( __get_SCTLR() & ~1);
__ISB();
}
/******************************** TLB maintenance operations ************************************************/
/** \brief Invalidate the whole tlb
TLBIALL. Invalidate the whole tlb
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ca9u_inv_tlb_all(void) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c8, c7, 0" : : "r" (0));
#else
register uint32_t __TLBIALL __ASM("cp15:0:c8:c7:0");
__TLBIALL = 0;
#endif
__DSB();
__ISB();
}
/******************************** BTB maintenance operations ************************************************/
/** \brief Invalidate entire branch predictor array
BPIALL. Branch Predictor Invalidate All.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_btac(void) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c5, 6" : : "r" (0));
#else
register uint32_t __BPIALL __ASM("cp15:0:c7:c5:6");
__BPIALL = 0;
#endif
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new state
}
/******************************** L1 cache operations ******************************************************/
/** \brief Invalidate the whole I$
ICIALLU. Instruction Cache Invalidate All to PoU
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_icache_all(void) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0));
#else
register uint32_t __ICIALLU __ASM("cp15:0:c7:c5:0");
__ICIALLU = 0;
#endif
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new I cache state
}
/** \brief Clean D$ by MVA
DCCMVAC. Data cache clean by MVA to PoC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_dcache_mva(void *va) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c10, 1" : : "r" ((uint32_t)va));
#else
register uint32_t __DCCMVAC __ASM("cp15:0:c7:c10:1");
__DCCMVAC = (uint32_t)va;
#endif
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Invalidate D$ by MVA
DCIMVAC. Data cache invalidate by MVA to PoC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_dcache_mva(void *va) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c6, 1" : : "r" ((uint32_t)va));
#else
register uint32_t __DCIMVAC __ASM("cp15:0:c7:c6:1");
__DCIMVAC = (uint32_t)va;
#endif
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Clean and Invalidate D$ by MVA
DCCIMVAC. Data cache clean and invalidate by MVA to PoC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c14, 1" : : "r" ((uint32_t)va));
#else
register uint32_t __DCCIMVAC __ASM("cp15:0:c7:c14:1");
__DCCIMVAC = (uint32_t)va;
#endif
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Clean and Invalidate the entire data or unified cache
Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency.
*/
extern void __v7_all_cache(uint32_t op);
/** \brief Invalidate the whole D$
DCISW. Invalidate by Set/Way
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_dcache_all(void) {
__v7_all_cache(0);
}
/** \brief Clean the whole D$
DCCSW. Clean by Set/Way
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_dcache_all(void) {
__v7_all_cache(1);
}
/** \brief Clean and invalidate the whole D$
DCCISW. Clean and Invalidate by Set/Way
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_inv_dcache_all(void) {
__v7_all_cache(2);
}
#include "core_ca_mmu.h"
#elif (defined (__TASKING__)) /*--------------- TASKING Compiler -----------------*/
#error TASKING Compiler support not implemented for Cortex-A
#endif
/*@} end of CMSIS_Core_RegAccFunctions */
#endif /* __CORE_CAFUNC_H__ */