mbed-os/tools/memap.py

909 lines
31 KiB
Python

#!/usr/bin/env python
"""Memory Map File Analyser for ARM mbed"""
from __future__ import print_function, division, absolute_import
from abc import abstractmethod, ABCMeta
from sys import stdout, exit, argv, path
from os import sep
from os.path import (basename, dirname, join, relpath, abspath, commonprefix,
splitext)
# Be sure that the tools directory is in the search path
ROOT = abspath(join(dirname(__file__), ".."))
path.insert(0, ROOT)
import re
import csv
import json
from argparse import ArgumentParser
from copy import deepcopy
from collections import defaultdict
from prettytable import PrettyTable, HEADER
from jinja2 import FileSystemLoader, StrictUndefined
from jinja2.environment import Environment
from tools.utils import (argparse_filestring_type, argparse_lowercase_hyphen_type,
argparse_uppercase_type)
class _Parser(object):
"""Internal interface for parsing"""
__metaclass__ = ABCMeta
SECTIONS = ('.text', '.data', '.bss', '.heap', '.stack')
MISC_FLASH_SECTIONS = ('.interrupts', '.flash_config')
OTHER_SECTIONS = ('.interrupts_ram', '.init', '.ARM.extab',
'.ARM.exidx', '.ARM.attributes', '.eh_frame',
'.init_array', '.fini_array', '.jcr', '.stab',
'.stabstr', '.ARM.exidx', '.ARM')
def __init__(self):
self.modules = dict()
def module_add(self, object_name, size, section):
""" Adds a module or section to the list
Positional arguments:
object_name - name of the entry to add
size - the size of the module being added
section - the section the module contributes to
"""
if not object_name or not size or not section:
return
if object_name in self.modules:
self.modules[object_name].setdefault(section, 0)
self.modules[object_name][section] += size
return
obj_split = sep + basename(object_name)
for module_path, contents in self.modules.items():
if module_path.endswith(obj_split) or module_path == object_name:
contents.setdefault(section, 0)
contents[section] += size
return
new_module = defaultdict(int)
new_module[section] = size
self.modules[object_name] = new_module
def module_replace(self, old_object, new_object):
""" Replaces an object name with a new one
"""
if old_object in self.modules:
self.modules[new_object] = self.modules[old_object]
del self.modules[old_object]
@abstractmethod
def parse_mapfile(self, mapfile):
"""Parse a given file object pointing to a map file
Positional arguments:
mapfile - an open file object that reads a map file
return value - a dict mapping from object names to section dicts,
where a section dict maps from sections to sizes
"""
raise NotImplemented
class _GccParser(_Parser):
RE_OBJECT_FILE = re.compile(r'^(.+\/.+\.o)$')
RE_LIBRARY_OBJECT = re.compile(r'^.+' + r''.format(sep) + r'lib((.+\.a)\((.+\.o)\))$')
RE_STD_SECTION = re.compile(r'^\s+.*0x(\w{8,16})\s+0x(\w+)\s(.+)$')
RE_FILL_SECTION = re.compile(r'^\s*\*fill\*\s+0x(\w{8,16})\s+0x(\w+).*$')
ALL_SECTIONS = _Parser.SECTIONS + _Parser.OTHER_SECTIONS + \
_Parser.MISC_FLASH_SECTIONS + ('unknown', 'OUTPUT')
def check_new_section(self, line):
""" Check whether a new section in a map file has been detected
Positional arguments:
line - the line to check for a new section
return value - A section name, if a new section was found, False
otherwise
"""
for i in self.ALL_SECTIONS:
if line.startswith(i):
# should name of the section (assuming it's a known one)
return i
if line.startswith('.'):
return 'unknown' # all others are classified are unknown
else:
return False # everything else, means no change in section
def parse_object_name(self, line):
""" Parse a path to object file
Positional arguments:
line - the path to parse the object and module name from
return value - an object file name
"""
test_re_mbed_os_name = re.match(self.RE_OBJECT_FILE, line)
if test_re_mbed_os_name:
object_name = test_re_mbed_os_name.group(1)
# corner case: certain objects are provided by the GCC toolchain
if 'arm-none-eabi' in line:
return join('[lib]', 'misc', basename(object_name))
return object_name
else:
test_re_obj_name = re.match(self.RE_LIBRARY_OBJECT, line)
if test_re_obj_name:
return join('[lib]', test_re_obj_name.group(2),
test_re_obj_name.group(3))
else:
if (not line.startswith("LONG") and
not line.startswith("linker stubs")):
print("Unknown object name found in GCC map file: %s"
% line)
return '[misc]'
def parse_section(self, line):
""" Parse data from a section of gcc map file
examples:
0x00004308 0x7c ./BUILD/K64F/GCC_ARM/mbed-os/hal/targets/hal/TARGET_Freescale/TARGET_KPSDK_MCUS/spi_api.o
.text 0x00000608 0x198 ./BUILD/K64F/GCC_ARM/mbed-os/core/mbed-rtos/rtx/TARGET_CORTEX_M/TARGET_RTOS_M4_M7/TOOLCHAIN/HAL_CM4.o
Positional arguments:
line - the line to parse a section from
"""
is_fill = re.match(self.RE_FILL_SECTION, line)
if is_fill:
o_name = '[fill]'
o_size = int(is_fill.group(2), 16)
return [o_name, o_size]
is_section = re.match(self.RE_STD_SECTION, line)
if is_section:
o_size = int(is_section.group(2), 16)
if o_size:
o_name = self.parse_object_name(is_section.group(3))
return [o_name, o_size]
return ["", 0]
def parse_mapfile(self, file_desc):
""" Main logic to decode gcc map files
Positional arguments:
file_desc - a stream object to parse as a gcc map file
"""
current_section = 'unknown'
with file_desc as infile:
for line in infile:
if line.startswith('Linker script and memory map'):
current_section = "unknown"
break
for line in infile:
next_section = self.check_new_section(line)
if next_section == "OUTPUT":
break
elif next_section:
current_section = next_section
object_name, object_size = self.parse_section(line)
self.module_add(object_name, object_size, current_section)
common_prefix = dirname(commonprefix([
o for o in self.modules.keys() if (o.endswith(".o") and not o.startswith("[lib]"))]))
new_modules = {}
for name, stats in self.modules.items():
if name.startswith("[lib]"):
new_modules[name] = stats
elif name.endswith(".o"):
new_modules[relpath(name, common_prefix)] = stats
else:
new_modules[name] = stats
return new_modules
class _ArmccParser(_Parser):
RE = re.compile(
r'^\s+0x(\w{8})\s+0x(\w{8})\s+(\w+)\s+(\w+)\s+(\d+)\s+[*]?.+\s+(.+)$')
RE_OBJECT = re.compile(r'(.+\.(l|ar))\((.+\.o)\)')
def parse_object_name(self, line):
""" Parse object file
Positional arguments:
line - the line containing the object or library
"""
if line.endswith(".o"):
return line
else:
is_obj = re.match(self.RE_OBJECT, line)
if is_obj:
return join('[lib]', basename(is_obj.group(1)), is_obj.group(3))
else:
print("Malformed input found when parsing ARMCC map: %s" % line)
return '[misc]'
def parse_section(self, line):
""" Parse data from an armcc map file
Examples of armcc map file:
Base_Addr Size Type Attr Idx E Section Name Object
0x00000000 0x00000400 Data RO 11222 self.RESET startup_MK64F12.o
0x00000410 0x00000008 Code RO 49364 * !!!main c_w.l(__main.o)
Positional arguments:
line - the line to parse the section data from
"""
test_re = re.match(self.RE, line)
if test_re:
size = int(test_re.group(2), 16)
if test_re.group(4) == 'RO':
section = '.text'
else:
if test_re.group(3) == 'Data':
section = '.data'
elif test_re.group(3) == 'Zero':
section = '.bss'
elif test_re.group(3) == 'Code':
section = '.text'
else:
print("Malformed input found when parsing armcc map: %s, %r"
% (line, test_re.groups()))
return ["", 0, ""]
# check name of object or library
object_name = self.parse_object_name(
test_re.group(6))
return [object_name, size, section]
else:
return ["", 0, ""]
def parse_mapfile(self, file_desc):
""" Main logic to decode armc5 map files
Positional arguments:
file_desc - a file like object to parse as an armc5 map file
"""
with file_desc as infile:
# Search area to parse
for line in infile:
if line.startswith(' Base Addr Size'):
break
# Start decoding the map file
for line in infile:
self.module_add(*self.parse_section(line))
common_prefix = dirname(commonprefix([
o for o in self.modules.keys() if (o.endswith(".o") and o != "anon$$obj.o" and not o.startswith("[lib]"))]))
new_modules = {}
for name, stats in self.modules.items():
if name == "anon$$obj.o" or name.startswith("[lib]"):
new_modules[name] = stats
elif name.endswith(".o"):
new_modules[relpath(name, common_prefix)] = stats
else:
new_modules[name] = stats
return new_modules
class _IarParser(_Parser):
RE = re.compile(
r'^\s+(.+)\s+(zero|const|ro code|inited|uninit)\s'
r'+0x([\'\w]+)\s+0x(\w+)\s+(.+)\s.+$')
RE_CMDLINE_FILE = re.compile(r'^#\s+(.+\.o)')
RE_LIBRARY = re.compile(r'^(.+\.a)\:.+$')
RE_OBJECT_LIBRARY = re.compile(r'^\s+(.+\.o)\s.*')
def __init__(self):
_Parser.__init__(self)
# Modules passed to the linker on the command line
# this is a dict because modules are looked up by their basename
self.cmd_modules = {}
def parse_object_name(self, object_name):
""" Parse object file
Positional arguments:
line - the line containing the object or library
"""
if object_name.endswith(".o"):
try:
return self.cmd_modules[object_name]
except KeyError:
return object_name
else:
return '[misc]'
def parse_section(self, line):
""" Parse data from an IAR map file
Examples of IAR map file:
Section Kind Address Size Object
.intvec ro code 0x00000000 0x198 startup_MK64F12.o [15]
.rodata const 0x00000198 0x0 zero_init3.o [133]
.iar.init_table const 0x00008384 0x2c - Linker created -
Initializer bytes const 0x00000198 0xb2 <for P3 s0>
.data inited 0x20000000 0xd4 driverAtmelRFInterface.o [70]
.bss zero 0x20000598 0x318 RTX_Conf_CM.o [4]
.iar.dynexit uninit 0x20001448 0x204 <Block tail>
HEAP uninit 0x20001650 0x10000 <Block tail>
Positional_arguments:
line - the line to parse section data from
"""
test_re = re.match(self.RE, line)
if test_re:
if (test_re.group(2) == 'const' or
test_re.group(2) == 'ro code'):
section = '.text'
elif (test_re.group(2) == 'zero' or
test_re.group(2) == 'uninit'):
if test_re.group(1)[0:4] == 'HEAP':
section = '.heap'
elif test_re.group(1)[0:6] == 'CSTACK':
section = '.stack'
else:
section = '.bss' # default section
elif test_re.group(2) == 'inited':
section = '.data'
else:
print("Malformed input found when parsing IAR map: %s" % line)
return ["", 0, ""]
# lookup object in dictionary and return module name
object_name = self.parse_object_name(test_re.group(5))
size = int(test_re.group(4), 16)
return [object_name, size, section]
else:
return ["", 0, ""]
def check_new_library(self, line):
"""
Searches for libraries and returns name. Example:
m7M_tls.a: [43]
"""
test_address_line = re.match(self.RE_LIBRARY, line)
if test_address_line:
return test_address_line.group(1)
else:
return ""
def check_new_object_lib(self, line):
"""
Searches for objects within a library section and returns name. Example:
rt7M_tl.a: [44]
ABImemclr4.o 6
ABImemcpy_unaligned.o 118
ABImemset48.o 50
I64DivMod.o 238
I64DivZer.o 2
"""
test_address_line = re.match(self.RE_OBJECT_LIBRARY, line)
if test_address_line:
return test_address_line.group(1)
else:
return ""
def parse_command_line(self, lines):
"""Parse the files passed on the command line to the iar linker
Positional arguments:
lines -- an iterator over the lines within a file
"""
for line in lines:
if line.startswith("*"):
break
for arg in line.split(" "):
arg = arg.rstrip(" \n")
if (not arg.startswith("-")) and arg.endswith(".o"):
self.cmd_modules[basename(arg)] = arg
common_prefix = dirname(commonprefix(list(self.cmd_modules.values())))
self.cmd_modules = {s: relpath(f, common_prefix)
for s, f in self.cmd_modules.items()}
def parse_mapfile(self, file_desc):
""" Main logic to decode IAR map files
Positional arguments:
file_desc - a file like object to parse as an IAR map file
"""
with file_desc as infile:
self.parse_command_line(infile)
for line in infile:
if line.startswith(' Section '):
break
for line in infile:
self.module_add(*self.parse_section(line))
if line.startswith('*** MODULE SUMMARY'): # finish section
break
current_library = ""
for line in infile:
library = self.check_new_library(line)
if library:
current_library = library
object_name = self.check_new_object_lib(line)
if object_name and current_library:
temp = join('[lib]', current_library, object_name)
self.module_replace(object_name, temp)
return self.modules
class MemapParser(object):
"""An object that represents parsed results, parses the memory map files,
and writes out different file types of memory results
"""
print_sections = ('.text', '.data', '.bss')
delta_sections = ('.text-delta', '.data-delta', '.bss-delta')
# sections to print info (generic for all toolchains)
sections = _Parser.SECTIONS
misc_flash_sections = _Parser.MISC_FLASH_SECTIONS
other_sections = _Parser.OTHER_SECTIONS
def __init__(self):
# list of all modules and their sections
# full list - doesn't change with depth
self.modules = dict()
self.old_modules = None
# short version with specific depth
self.short_modules = dict()
# Memory report (sections + summary)
self.mem_report = []
# Memory summary
self.mem_summary = dict()
# Totals of ".text", ".data" and ".bss"
self.subtotal = dict()
# Flash no associated with a module
self.misc_flash_mem = 0
# Name of the toolchain, for better headings
self.tc_name = None
def reduce_depth(self, depth):
"""
populates the short_modules attribute with a truncated module list
(1) depth = 1:
main.o
mbed-os
(2) depth = 2:
main.o
mbed-os/test.o
mbed-os/drivers
"""
if depth == 0 or depth == None:
self.short_modules = deepcopy(self.modules)
else:
self.short_modules = dict()
for module_name, v in self.modules.items():
split_name = module_name.split(sep)
if split_name[0] == '':
split_name = split_name[1:]
new_name = join(*split_name[:depth])
self.short_modules.setdefault(new_name, defaultdict(int))
for section_idx, value in v.items():
self.short_modules[new_name][section_idx] += self.modules[module_name][section_idx]
self.short_modules[new_name][section_idx + '-delta'] += self.modules[module_name][section_idx]
if self.old_modules:
for module_name, v in self.old_modules.items():
split_name = module_name.split(sep)
if split_name[0] == '':
split_name = split_name[1:]
new_name = join(*split_name[:depth])
self.short_modules.setdefault(new_name, defaultdict(int))
for section_idx, value in v.items():
self.short_modules[new_name][section_idx + '-delta'] -= self.old_modules[module_name][section_idx]
export_formats = ["json", "csv-ci", "html", "table"]
def generate_output(self, export_format, depth, file_output=None):
""" Generates summary of memory map data
Positional arguments:
export_format - the format to dump
Keyword arguments:
file_desc - descriptor (either stdout or file)
depth - directory depth on report
Returns: generated string for the 'table' format, otherwise None
"""
if depth is None or depth > 0:
self.reduce_depth(depth)
self.compute_report()
try:
if file_output:
file_desc = open(file_output, 'w')
else:
file_desc = stdout
except IOError as error:
print("I/O error({0}): {1}".format(error.errno, error.strerror))
return False
to_call = {'json': self.generate_json,
'html': self.generate_html,
'csv-ci': self.generate_csv,
'table': self.generate_table}[export_format]
output = to_call(file_desc)
if file_desc is not stdout:
file_desc.close()
return output
@staticmethod
def _move_up_tree(tree, next_module):
tree.setdefault("children", [])
for child in tree["children"]:
if child["name"] == next_module:
return child
else:
new_module = {"name": next_module, "value": 0, "delta": 0}
tree["children"].append(new_module)
return new_module
def generate_html(self, file_desc):
"""Generate a json file from a memory map for D3
Positional arguments:
file_desc - the file to write out the final report to
"""
tree_text = {"name": ".text", "value": 0, "delta": 0}
tree_bss = {"name": ".bss", "value": 0, "delta": 0}
tree_data = {"name": ".data", "value": 0, "delta": 0}
for name, dct in self.modules.items():
cur_text = tree_text
cur_bss = tree_bss
cur_data = tree_data
modules = name.split(sep)
while True:
try:
cur_text["value"] += dct['.text']
cur_text["delta"] += dct['.text']
except KeyError:
pass
try:
cur_bss["value"] += dct['.bss']
cur_bss["delta"] += dct['.bss']
except KeyError:
pass
try:
cur_data["value"] += dct['.data']
cur_data["delta"] += dct['.data']
except KeyError:
pass
if not modules:
break
next_module = modules.pop(0)
cur_text = self._move_up_tree(cur_text, next_module)
cur_data = self._move_up_tree(cur_data, next_module)
cur_bss = self._move_up_tree(cur_bss, next_module)
if self.old_modules:
for name, dct in self.old_modules.items():
cur_text = tree_text
cur_bss = tree_bss
cur_data = tree_data
modules = name.split(sep)
while True:
try:
cur_text["delta"] -= dct['.text']
except KeyError:
pass
try:
cur_bss["delta"] -= dct['.bss']
except KeyError:
pass
try:
cur_data["delta"] -= dct['.data']
except KeyError:
pass
if not modules:
break
next_module = modules.pop(0)
if not any(cld['name'] == next_module for cld in cur_text['children']):
break
cur_text = self._move_up_tree(cur_text, next_module)
cur_data = self._move_up_tree(cur_data, next_module)
cur_bss = self._move_up_tree(cur_bss, next_module)
tree_rom = {
"name": "ROM",
"value": tree_text["value"] + tree_data["value"],
"delta": tree_text["delta"] + tree_data["delta"],
"children": [tree_text, tree_data]
}
tree_ram = {
"name": "RAM",
"value": tree_bss["value"] + tree_data["value"],
"delta": tree_bss["delta"] + tree_data["delta"],
"children": [tree_bss, tree_data]
}
jinja_loader = FileSystemLoader(dirname(abspath(__file__)))
jinja_environment = Environment(loader=jinja_loader,
undefined=StrictUndefined)
template = jinja_environment.get_template("memap_flamegraph.html")
name, _ = splitext(basename(file_desc.name))
if name.endswith("_map"):
name = name[:-4]
if self.tc_name:
name = "%s %s" % (name, self.tc_name)
data = {
"name": name,
"rom": json.dumps(tree_rom),
"ram": json.dumps(tree_ram),
}
file_desc.write(template.render(data))
return None
def generate_json(self, file_desc):
"""Generate a json file from a memory map
Positional arguments:
file_desc - the file to write out the final report to
"""
file_desc.write(json.dumps(self.mem_report, indent=4))
file_desc.write('\n')
return None
RAM_FORMAT_STR = (
"Total Static RAM memory (data + bss): {}({:+}) bytes\n"
)
ROM_FORMAT_STR = (
"Total Flash memory (text + data): {}({:+}) bytes\n"
)
def generate_csv(self, file_desc):
"""Generate a CSV file from a memoy map
Positional arguments:
file_desc - the file to write out the final report to
"""
writer = csv.writer(file_desc, delimiter=',',
quoting=csv.QUOTE_MINIMAL)
module_section = []
sizes = []
for i in sorted(self.short_modules):
for k in self.print_sections + self.delta_sections:
module_section.append((i + k))
sizes += [self.short_modules[i][k]]
module_section.append('static_ram')
sizes.append(self.mem_summary['static_ram'])
module_section.append('total_flash')
sizes.append(self.mem_summary['total_flash'])
writer.writerow(module_section)
writer.writerow(sizes)
return None
def generate_table(self, file_desc):
"""Generate a table from a memoy map
Returns: string of the generated table
"""
# Create table
columns = ['Module']
columns.extend(self.print_sections)
table = PrettyTable(columns, junction_char="|", hrules=HEADER)
table.align["Module"] = "l"
for col in self.print_sections:
table.align[col] = 'r'
for i in list(self.print_sections):
table.align[i] = 'r'
for i in sorted(self.short_modules):
row = [i]
for k in self.print_sections:
row.append("{}({:+})".format(self.short_modules[i][k],
self.short_modules[i][k + "-delta"]))
table.add_row(row)
subtotal_row = ['Subtotals']
for k in self.print_sections:
subtotal_row.append("{}({:+})".format(
self.subtotal[k], self.subtotal[k + '-delta']))
table.add_row(subtotal_row)
output = table.get_string()
output += '\n'
output += self.RAM_FORMAT_STR.format(
self.mem_summary['static_ram'],
self.mem_summary['static_ram_delta']
)
output += self.ROM_FORMAT_STR.format(
self.mem_summary['total_flash'],
self.mem_summary['total_flash_delta']
)
return output
toolchains = ["ARM", "ARM_STD", "ARM_MICRO", "GCC_ARM", "IAR"]
def compute_report(self):
""" Generates summary of memory usage for main areas
"""
self.subtotal = defaultdict(int)
for mod in self.modules.values():
for k in self.sections:
self.subtotal[k] += mod[k]
self.subtotal[k + '-delta'] += mod[k]
if self.old_modules:
for mod in self.old_modules.values():
for k in self.sections:
self.subtotal[k + '-delta'] -= mod[k]
self.mem_summary = {
'static_ram': self.subtotal['.data'] + self.subtotal['.bss'],
'static_ram_delta':
self.subtotal['.data-delta'] + self.subtotal['.bss-delta'],
'total_flash': (self.subtotal['.text'] + self.subtotal['.data']),
'total_flash_delta':
self.subtotal['.text-delta'] + self.subtotal['.data-delta'],
}
self.mem_report = []
if self.short_modules:
for name, sizes in sorted(self.short_modules.items()):
self.mem_report.append({
"module": name,
"size":{
k: sizes.get(k, 0) for k in (self.print_sections +
self.delta_sections)
}
})
self.mem_report.append({
'summary': self.mem_summary
})
def parse(self, mapfile, toolchain):
""" Parse and decode map file depending on the toolchain
Positional arguments:
mapfile - the file name of the memory map file
toolchain - the toolchain used to create the file
"""
self.tc_name = toolchain.title()
if toolchain in ("ARM", "ARM_STD", "ARM_MICRO", "ARMC6"):
parser = _ArmccParser
elif toolchain == "GCC_ARM":
parser = _GccParser
elif toolchain == "IAR":
parser = _IarParser
else:
return False
try:
with open(mapfile, 'r') as file_input:
self.modules = parser().parse_mapfile(file_input)
try:
with open("%s.old" % mapfile, 'r') as old_input:
self.old_modules = parser().parse_mapfile(old_input)
except IOError:
self.old_modules = None
return True
except IOError as error:
print("I/O error({0}): {1}".format(error.errno, error.strerror))
return False
def main():
"""Entry Point"""
version = '0.4.0'
# Parser handling
parser = ArgumentParser(
description="Memory Map File Analyser for ARM mbed\nversion %s" %
version)
parser.add_argument(
'file', type=argparse_filestring_type, help='memory map file')
parser.add_argument(
'-t', '--toolchain', dest='toolchain',
help='select a toolchain used to build the memory map file (%s)' %
", ".join(MemapParser.toolchains),
required=True,
type=argparse_uppercase_type(MemapParser.toolchains, "toolchain"))
parser.add_argument(
'-d', '--depth', dest='depth', type=int,
help='specify directory depth level to display report', required=False)
parser.add_argument(
'-o', '--output', help='output file name', required=False)
parser.add_argument(
'-e', '--export', dest='export', required=False, default='table',
type=argparse_lowercase_hyphen_type(MemapParser.export_formats,
'export format'),
help="export format (examples: %s: default)" %
", ".join(MemapParser.export_formats))
parser.add_argument('-v', '--version', action='version', version=version)
# Parse/run command
if len(argv) <= 1:
parser.print_help()
exit(1)
args = parser.parse_args()
# Create memap object
memap = MemapParser()
# Parse and decode a map file
if args.file and args.toolchain:
if memap.parse(args.file, args.toolchain) is False:
exit(0)
if args.depth is None:
depth = 2 # default depth level
else:
depth = args.depth
returned_string = None
# Write output in file
if args.output != None:
returned_string = memap.generate_output(args.export, \
depth, args.output)
else: # Write output in screen
returned_string = memap.generate_output(args.export, depth)
if args.export == 'table' and returned_string:
print(returned_string)
exit(0)
if __name__ == "__main__":
main()