mbed-os/targets/TARGET_Maxim/TARGET_MAX32620C/serial_api.c

421 lines
14 KiB
C

/*******************************************************************************
* Copyright (C) 2017 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include <string.h>
#include "mbed_assert.h"
#include "cmsis.h"
#include "serial_api.h"
#include "gpio_api.h"
#include "uart.h"
#include "uart_regs.h"
#include "ioman_regs.h"
#include "PeripheralPins.h"
#define DEFAULT_BAUD 9600
#define UART_ERRORS (MXC_F_UART_INTFL_RX_FRAMING_ERR | \
MXC_F_UART_INTFL_RX_PARITY_ERR | \
MXC_F_UART_INTFL_RX_FIFO_OVERFLOW)
// Variables for managing the stdio UART
int stdio_uart_inited = 0;
serial_t stdio_uart = {0};
// Variables for interrupt driven
static uart_irq_handler irq_handler;
static serial_t *objs[MXC_CFG_UART_INSTANCES];
static void usurp_pin(PinName, int);
//******************************************************************************
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
// Determine which uart is associated with each pin
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
// Make sure that both pins are pointing to the same uart
MBED_ASSERT(uart != (UARTName)NC);
// Set the obj pointer to the proper uart
obj->uart = (mxc_uart_regs_t*)uart;
// Set the uart index
obj->index = MXC_UART_GET_IDX(obj->uart);
obj->fifo = (mxc_uart_fifo_regs_t*)MXC_UART_GET_BASE_FIFO(obj->index);
// Record the pins requested
obj->tx = tx;
obj->rx = rx;
// Merge pin function requests for use with CMSIS init func
ioman_req_t io_req = {0};
pin_function_t *pin_func = NULL;
if (tx != NC) {
pin_func = (pin_function_t *)pinmap_find_function(tx, PinMap_UART_TX);
io_req.value = pin_func->req_val;
}
if (rx != NC) {
pin_func = (pin_function_t *)pinmap_find_function(rx, PinMap_UART_RX);
io_req.value |= pin_func->req_val;
}
// Using req and ack pointers of last pin function lookup
obj->sys_cfg.io_cfg.req_reg = pin_func->reg_req;
obj->sys_cfg.io_cfg.ack_reg = pin_func->reg_ack;
obj->sys_cfg.io_cfg.req_val = io_req;
obj->sys_cfg.clk_scale = CLKMAN_SCALE_DIV_8;
// Configure the UART with default parameters
obj->cfg.extra_stop = 0;
obj->cfg.cts = 0;
obj->cfg.rts = 0;
obj->cfg.baud = DEFAULT_BAUD;
obj->cfg.size = UART_DATA_SIZE_8_BITS;
obj->cfg.parity = UART_PARITY_DISABLE;
// Manage stdio UART
if (uart == STDIO_UART) {
stdio_uart_inited = 1;
stdio_uart = *obj;
}
int retval = UART_Init(obj->uart, &obj->cfg, &obj->sys_cfg);
MBED_ASSERT(retval == E_NO_ERROR);
objs[obj->index] = obj;
}
//******************************************************************************
void serial_baud(serial_t *obj, int baudrate)
{
obj->cfg.baud = baudrate;
int retval = UART_Init(obj->uart, &obj->cfg, NULL);
MBED_ASSERT(retval == E_NO_ERROR);
}
//******************************************************************************
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
switch (data_bits) {
case 5:
obj->cfg.size = UART_DATA_SIZE_5_BITS;
break;
case 6:
obj->cfg.size = UART_DATA_SIZE_6_BITS;
break;
case 7:
obj->cfg.size = UART_DATA_SIZE_7_BITS;
break;
case 8:
obj->cfg.size = UART_DATA_SIZE_8_BITS;
break;
default:
MBED_ASSERT(0);
break;
}
switch (parity) {
case ParityNone:
obj->cfg.parity = UART_PARITY_DISABLE;
break;
case ParityOdd :
obj->cfg.parity = UART_PARITY_ODD;
break;
case ParityEven:
obj->cfg.parity = UART_PARITY_EVEN;
break;
case ParityForced1:
case ParityForced0:
default:
MBED_ASSERT(0);
break;
}
switch (stop_bits) {
case 1:
obj->cfg.extra_stop = 0;
break;
case 2:
obj->cfg.extra_stop = 1;
break;
default:
MBED_ASSERT(0);
break;
}
int retval = UART_Init(obj->uart, &obj->cfg, NULL);
MBED_ASSERT(retval == E_NO_ERROR);
}
//******************************************************************************
void uart_handler(serial_t *obj)
{
if (obj && obj->id) {
if ((obj->uart->inten & (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS)) &&
(obj->uart->intfl & (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS))) {
irq_handler(obj->id, RxIrq);
obj->uart->intfl = (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS);
}
if ((obj->uart->inten & MXC_F_UART_INTFL_TX_FIFO_AE) &&
(obj->uart->intfl & MXC_F_UART_INTFL_TX_FIFO_AE)) {
irq_handler(obj->id, TxIrq);
obj->uart->intfl = MXC_F_UART_INTFL_TX_FIFO_AE;
}
}
}
void uart0_handler(void) { uart_handler(objs[0]); }
void uart1_handler(void) { uart_handler(objs[1]); }
void uart2_handler(void) { uart_handler(objs[2]); }
void uart3_handler(void) { uart_handler(objs[3]); }
//******************************************************************************
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
obj->id = id;
}
//******************************************************************************
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
MBED_ASSERT(obj->index < MXC_CFG_UART_INSTANCES);
// objs[obj->index] = obj;
switch (obj->index) {
case 0:
NVIC_SetVector(UART0_IRQn, (uint32_t)uart0_handler);
NVIC_EnableIRQ(UART0_IRQn);
break;
case 1:
NVIC_SetVector(UART1_IRQn, (uint32_t)uart1_handler);
NVIC_EnableIRQ(UART1_IRQn);
break;
case 2:
NVIC_SetVector(UART2_IRQn, (uint32_t)uart2_handler);
NVIC_EnableIRQ(UART2_IRQn);
break;
case 3:
NVIC_SetVector(UART3_IRQn, (uint32_t)uart3_handler);
NVIC_EnableIRQ(UART3_IRQn);
break;
default:
MBED_ASSERT(0);
}
if (irq == RxIrq) {
// Enable RX FIFO Threshold Interrupt
if (enable) {
// Clear pending interrupts
obj->uart->intfl = obj->uart->intfl;
obj->uart->inten |= (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS);
} else {
// Clear pending interrupts
obj->uart->intfl = obj->uart->intfl;
obj->uart->inten &= ~(MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS);
}
} else if (irq == TxIrq) {
// Set TX Almost Empty level to interrupt when empty
MXC_SET_FIELD(&obj->uart->tx_fifo_ctrl,
MXC_F_UART_TX_FIFO_CTRL_FIFO_AE_LVL,
(MXC_UART_FIFO_DEPTH - 1) << MXC_F_UART_TX_FIFO_CTRL_FIFO_AE_LVL_POS);
// Enable TX Almost Empty Interrupt
if (enable) {
// Clear pending interrupts
obj->uart->intfl = obj->uart->intfl;
obj->uart->inten |= MXC_F_UART_INTFL_TX_FIFO_AE;
} else {
// Clear pending interrupts
obj->uart->intfl = obj->uart->intfl;
obj->uart->inten &= ~MXC_F_UART_INTFL_TX_FIFO_AE;
}
} else {
MBED_ASSERT(0);
}
}
//******************************************************************************
int serial_getc(serial_t *obj)
{
int c = -1;
if (obj->rx != NC) {
// Wait for data to be available
while ((obj->uart->rx_fifo_ctrl & MXC_F_UART_RX_FIFO_CTRL_FIFO_ENTRY) == 0);
c = obj->fifo->rx;
// Clear receive interrupt sources
obj->uart->intfl = (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS);
}
return c;
}
//******************************************************************************
void serial_putc(serial_t *obj, int c)
{
if (obj->tx != NC) {
// Wait for room in the FIFO without blocking interrupts.
while (UART_NumWriteAvail(obj->uart) == 0);
// Must clear before every write to the buffer to know that the FIFO
// is empty when the TX DONE bit is set
obj->uart->intfl = MXC_F_UART_INTFL_TX_DONE;
obj->fifo->tx = (uint8_t)c;
}
}
//******************************************************************************
int serial_readable(serial_t *obj)
{
return UART_NumReadAvail(obj->uart);
}
//******************************************************************************
int serial_writable(serial_t *obj)
{
return UART_NumWriteAvail(obj->uart);
}
//******************************************************************************
void serial_clear(serial_t *obj)
{
// Clear the RX and TX FIFOs
UART_DrainRX(obj->uart);
UART_DrainTX(obj->uart);
}
//******************************************************************************
void serial_break_set(serial_t *obj)
{
// Make sure that nothing is being sent
while (((obj->uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY)
>> MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY_POS) > 0);
while (!(obj->uart->intfl & MXC_F_UART_INTFL_TX_DONE));
// Configure TX to output 0
usurp_pin(obj->tx, 0);
// GPIO is setup now, but we need to unmap UART from the pin
pin_function_t *pin_func = (pin_function_t *)pinmap_find_function(obj->tx, PinMap_UART_TX);
*pin_func->reg_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ;
MBED_ASSERT((*pin_func->reg_ack & MXC_F_IOMAN_UART_ACK_IO_ACK) == 0);
}
//******************************************************************************
void serial_break_clear(serial_t *obj)
{
// Configure TX to output 1
usurp_pin(obj->tx, 1);
// Return TX to UART control
serial_pinout_tx(obj->tx);
}
//******************************************************************************
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
//******************************************************************************
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
pin_function_t rtscts_pin_func = {0};
obj->cfg.cts = 0;
obj->cfg.rts = 0;
if ((FlowControlCTS == type) || (FlowControlRTSCTS == type)) {
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
UARTName uart = (UARTName)pinmap_merge(uart_cts, (UARTName)obj->uart);
// Assert pin is usable with existing uart
MBED_ASSERT(uart != (UARTName)NC);
pin_function_t *pin_func;
pin_func = (pin_function_t *)pinmap_find_function(txflow, PinMap_UART_CTS);
rtscts_pin_func.req_val |= pin_func->req_val;
obj->cfg.cts = 1;
}
if ((FlowControlRTS == type) || (FlowControlRTSCTS == type)) {
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
UARTName uart = (UARTName)pinmap_merge(uart_rts, (UARTName)obj->uart);
MBED_ASSERT(uart != (UARTName)NC);
pin_function_t *pin_func;
pin_func = (pin_function_t *)pinmap_find_function(rxflow, PinMap_UART_RTS);
rtscts_pin_func.req_val |= pin_func->req_val;
obj->cfg.rts = 1;
}
obj->sys_cfg.io_cfg.req_val.value |= rtscts_pin_func.req_val;
int retval = UART_Init(obj->uart, &obj->cfg, &obj->sys_cfg);
MBED_ASSERT(retval == E_NO_ERROR);
}
//******************************************************************************
static void usurp_pin(PinName pin, int state)
{
gpio_t gpio;
gpio_init_out(&gpio, pin);
gpio_write(&gpio, state);
}
const PinMap *serial_tx_pinmap()
{
return PinMap_UART_TX;
}
const PinMap *serial_rx_pinmap()
{
return PinMap_UART_RX;
}
const PinMap *serial_cts_pinmap()
{
return PinMap_UART_CTS;
}
const PinMap *serial_rts_pinmap()
{
return PinMap_UART_RTS;
}