mbed-os/features/FEATURE_UVISOR/source/page_allocator.c_inc

299 lines
13 KiB
Plaintext

/*
* Copyright (c) 2016, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file can be compiled externally to provide the page allocator algorithm
* for devices NOT supported by uVisor. For this purpose this file is copied as
* is into the target build folder and compiled by the target build system. */
#if defined(UVISOR_PRESENT) && (UVISOR_PRESENT == 1)
#include <uvisor.h>
#include "page_allocator.h"
#include "page_allocator_faults.h"
#include "vmpu_unpriv_access.h"
#include "vmpu.h"
#include "halt.h"
#include "context.h"
/* Since the page table memory is provided by the user, all accesses to it
* are depriviledged! */
#define page_table_read vmpu_unpriv_uint32_read
#define page_table_write vmpu_unpriv_uint32_write
/* For uVisor in supported mode the page allocator is always called through a
* SVC call, which automagically serializes access to it. */
#define UVISOR_PAGE_ALLOCATOR_MUTEX_AQUIRE {}
#define UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE {}
#define UVISOR_PAGE_UNUSED UVISOR_BOX_ID_INVALID
#endif /* defined(UVISOR_PRESENT) && (UVISOR_PRESENT == 1) */
#include "page_allocator_config.h"
/* Contains the page usage mapped by owner. */
uint32_t g_page_owner_map[UVISOR_MAX_BOXES][UVISOR_PAGE_MAP_COUNT];
/* Contains total page usage. */
uint32_t g_page_usage_map[UVISOR_PAGE_MAP_COUNT];
/* Contains the configured page size. */
uint32_t g_page_size;
/* Points to the beginning of the page heap. */
const void * g_page_heap_start;
/* Points to the end of the page heap. */
const void * g_page_heap_end;
/* Contains the number of free pages. */
uint8_t g_page_count_free;
/* Contains the total number of available pages. */
uint8_t g_page_count_total;
/* Contains the shift of the page owner mask. */
uint8_t g_page_map_shift;
/* Contains the rounded up page end address for ARMv7-M MPU region alignment. */
uint32_t g_page_head_end_rounded;
/* Helper function maps pointer to page id, or UVISOR_PAGE_UNUSED. */
uint8_t page_allocator_get_page_from_address(uint32_t address)
{
/* Range check the returned pointer. */
if (address < (uint32_t) g_page_heap_start || address >= (uint32_t) g_page_heap_end) {
return UVISOR_PAGE_UNUSED;
}
/* Compute the index for the pointer. */
return (address - (uint32_t) g_page_heap_start) / g_page_size;
}
void page_allocator_init(void * const heap_start, void * const heap_end, const uint32_t * const page_size)
{
if (!page_size || !vmpu_public_flash_addr((uint32_t) page_size)) {
HALT_ERROR(SANITY_CHECK_FAILED,
"Page size pointer (0x%08x) is not in flash memory.\n",
(unsigned int) page_size);
}
if (!heap_start || !vmpu_public_sram_addr((uint32_t) heap_start)) {
HALT_ERROR(SANITY_CHECK_FAILED,
"Page heap start pointer (0x%08x) is not in sram memory.\n",
(unsigned int) heap_start);
}
if (!heap_end || !vmpu_public_sram_addr((uint32_t) heap_end)) {
HALT_ERROR(SANITY_CHECK_FAILED,
"Page heap end pointer (0x%08x) is not in sram memory.\n",
(unsigned int) heap_end);
}
if (heap_end < heap_start) {
HALT_ERROR(SANITY_CHECK_FAILED,
"Page heap end pointer (0x%08x) is smaller than heap start pointer (0x%08x).\n",
(unsigned int) heap_end,
(unsigned int) heap_start);
}
if ((*page_size < UVISOR_PAGE_SIZE_MINIMUM) || !vmpu_is_region_size_valid(*page_size)) {
HALT_ERROR(SANITY_CHECK_FAILED,
"Page size (%uB) not supported by this platform!\n",
*page_size);
}
uint32_t start = vmpu_round_up_region((uint32_t) heap_start, *page_size);
if (start == 0) {
HALT_ERROR(SANITY_CHECK_FAILED,
"Page heap start address 0x%08x cannot be aligned with page size %uB!\n",
(unsigned int) heap_start,
(unsigned int) *page_size);
}
g_page_size = *page_size;
/* This is the page heap start address. */
g_page_heap_start = (void *) start;
/* How many pages can we fit in here? */
if (start > (0xFFFFFFFFUL - g_page_size) || (start + g_page_size) > (uint32_t) heap_end) {
g_page_count_total = 0;
} else {
g_page_count_total = ((uint32_t) heap_end - start) / g_page_size;
}
/* Clamp page count to table size. */
if (g_page_count_total > UVISOR_PAGE_MAX_COUNT) {
DPRINTF("uvisor_page_init: Clamping available page count from %u to %u!\n", g_page_count_total, UVISOR_PAGE_MAX_COUNT);
/* Move the heap start address forward so that the last clamped page is located nearest to the heap end. */
g_page_heap_start += (g_page_count_total - UVISOR_PAGE_MAX_COUNT) * g_page_size;
/* Clamp the page count. */
g_page_count_total = UVISOR_PAGE_MAX_COUNT;
}
g_page_count_free = g_page_count_total;
/* Remember the end of the heap. */
g_page_heap_end = g_page_heap_start + g_page_count_total * g_page_size;
g_page_head_end_rounded = vmpu_round_up_region((uint32_t) g_page_heap_end, g_page_size * 8);
/* Compute the page map shift.
* This initial shift fully left aligns the page map. */
g_page_map_shift = UVISOR_PAGE_MAP_COUNT * 32 - g_page_count_total;
g_page_map_shift -= (g_page_head_end_rounded - (uint32_t) g_page_heap_end) / g_page_size;
DPRINTF(
"page heap: [0x%08x, 0x%08x] %ukB -> %u %ukB pages\r\n",
(unsigned int) g_page_heap_start,
(unsigned int) g_page_heap_end,
(unsigned int) (g_page_count_free * g_page_size / 1024),
(unsigned int) g_page_count_total,
(unsigned int) (g_page_size / 1024)
);
/* Force a reset of owner and usage page maps. */
memset(g_page_owner_map, 0, sizeof(g_page_owner_map));
memset(g_page_usage_map, 0, sizeof(g_page_usage_map));
}
int page_allocator_malloc(UvisorPageTable * const table)
{
UVISOR_PAGE_ALLOCATOR_MUTEX_AQUIRE;
uint32_t pages_required = page_table_read((uint32_t) &(table->page_count));
uint32_t page_size = page_table_read((uint32_t) &(table->page_size));
/* Check if the user even wants any pages. */
if (pages_required == 0) {
DPRINTF("uvisor_page_malloc: FAIL: No pages requested!\n\n");
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_INVALID_PAGE_COUNT;
}
/* Check if we can fulfill the requested page size. */
if (page_size != g_page_size) {
DPRINTF("uvisor_page_malloc: FAIL: Requested page size %uB is not the configured page size %uB!\n\n", page_size, g_page_size);
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_INVALID_PAGE_SIZE;
}
/* Check if we have enough pages available. */
if (pages_required > g_page_count_free) {
DPRINTF("uvisor_page_malloc: FAIL: Cannot serve %u pages with only %u free pages!\n\n", pages_required, g_page_count_free);
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_OUT_OF_MEMORY;
}
/* Get the calling box id. */
const page_owner_t box_id = g_active_box;
DPRINTF("uvisor_page_malloc: Requesting %u pages with size %uB for box %u\n", pages_required, page_size, box_id);
/* Update the free pages count. */
g_page_count_free -= pages_required;
/* Point to the first entry in the table. */
void * * page_table = &(table->page_origins[0]);
/* Iterate through the page table and find the empty pages. */
uint32_t page = 0;
for (; (page < g_page_count_total) && pages_required; page++) {
/* If the page is unused, map_get returns zero. */
if (!page_allocator_map_get(g_page_usage_map, page)) {
/* Remember this page as used. */
page_allocator_map_set(g_page_usage_map, page);
/* Pages of box 0 are accessible to all other boxes! */
if (box_id == 0) {
uint32_t ii = 0;
for (; ii < UVISOR_MAX_BOXES; ii++) {
page_allocator_map_set(g_page_owner_map[ii], page);
}
} else {
/* Otherwise, remember ownership only for active box. */
page_allocator_map_set(g_page_owner_map[box_id], page);
}
/* Reset the fault count for this page. */
page_allocator_reset_faults(page);
/* Get the pointer to the page. */
void * ptr = (void *) g_page_heap_start + page * g_page_size;
/* Zero the entire page before handing it out. */
memset(ptr, 0, g_page_size);
/* Write the pages address to the table in the first page. */
page_table_write((uint32_t) page_table, (uint32_t) ptr);
page_table++;
/* One less page required. */
pages_required--;
DPRINTF("uvisor_page_malloc: Found an empty page 0x%08x entry at index %u\n", (unsigned int) ptr, page);
}
}
DPRINTF("uvisor_page_malloc: %u free pages remaining.\n\n", g_page_count_free);
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_OK;
}
int page_allocator_free(const UvisorPageTable * const table)
{
UVISOR_PAGE_ALLOCATOR_MUTEX_AQUIRE;
if (g_page_count_free == g_page_count_total) {
DPRINTF("uvisor_page_free: FAIL: There are no pages to free!\n\n");
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_INVALID_PAGE_TABLE;
}
uint32_t page_count = page_table_read((uint32_t) &(table->page_count));
uint32_t page_size = page_table_read((uint32_t) &(table->page_size));
if (page_size != g_page_size) {
DPRINTF("uvisor_page_free: FAIL: Requested page size %uB is not the configured page size %uB!\n\n", page_size, g_page_size);
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_INVALID_PAGE_SIZE;
}
if (page_count == 0) {
DPRINTF("uvisor_page_free: FAIL: Pointer table is empty!\n\n");
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_INVALID_PAGE_COUNT;
}
if (page_count > (unsigned) (g_page_count_total - g_page_count_free)) {
DPRINTF("uvisor_page_free: FAIL: Pointer table too large!\n\n");
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_INVALID_PAGE_TABLE;
}
/* Get the calling box id. */
const page_owner_t box_id = g_active_box;
/* Iterate over the table and validate each pointer. */
void * const * page_table = &(table->page_origins[0]);
int table_size = page_count;
for (; table_size > 0; page_table++, table_size--) {
void * page = (void *) page_table_read((uint32_t) page_table);
/* Compute the index for the pointer. */
uint8_t page_index = page_allocator_get_page_from_address((uint32_t) page);
/* Range check the returned pointer. */
if (page_index == UVISOR_PAGE_UNUSED) {
DPRINTF("uvisor_page_free: FAIL: Pointer 0x%08x does not belong to any page!\n\n", (unsigned int) page);
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_INVALID_PAGE_ORIGIN;
}
/* Check if the page belongs to the caller. */
if (page_allocator_map_get(g_page_owner_map[box_id], page_index)) {
/* Clear the owner and usage page maps for this page. */
page_allocator_map_clear(g_page_usage_map, page_index);
/* If the page was owned by box 0, we need to remove it from all other boxes! */
if (box_id == 0) {
uint32_t ii = 0;
for (; ii < UVISOR_MAX_BOXES; ii++) {
page_allocator_map_clear(g_page_owner_map[ii], page_index);
}
} else {
/* Otherwise, only remove for the active box. */
page_allocator_map_clear(g_page_owner_map[box_id], page_index);
}
g_page_count_free++;
DPRINTF("uvisor_page_free: Freeing page at index %u\n", page_index);
}
else {
/* Abort if the page doesn't belong to the caller. */
if (!page_allocator_map_get(g_page_usage_map, page_index)) {
DPRINTF("uvisor_page_free: FAIL: Page %u is not allocated!\n\n", page_index);
} else {
DPRINTF("uvisor_page_free: FAIL: Page %u is not owned by box %u!\n\n", page_index, box_id);
}
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_INVALID_PAGE_OWNER;
}
}
DPRINTF("uvisor_page_free: %u free pages available.\n\n", g_page_count_free);
UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE;
return UVISOR_ERROR_PAGE_OK;
}