mbed-os/targets/TARGET_NORDIC/TARGET_NRF5/spi_api.c

575 lines
17 KiB
C

/*
* Copyright (c) 2013 Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA
* integrated circuit in a product or a software update for such product, must reproduce
* the above copyright notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific prior
* written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary or object form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "spi_api.h"
#if DEVICE_SPI
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_assert.h"
#include "mbed_error.h"
#include "nrf_drv_spi.h"
#include "nrf_drv_spis.h"
#include "app_util_platform.h"
#include "sdk_config.h"
#if DEVICE_SPI_ASYNCH
#define SPI_IDX(obj) ((obj)->spi.spi_idx)
#else
#define SPI_IDX(obj) ((obj)->spi_idx)
#endif
#define SPI_INFO(obj) (&m_spi_info[SPI_IDX(obj)])
#define MASTER_INST(obj) (&m_instances[SPI_IDX(obj)].master)
#define SLAVE_INST(obj) (&m_instances[SPI_IDX(obj)].slave)
typedef struct {
bool initialized;
bool master;
uint8_t sck_pin;
uint8_t mosi_pin;
uint8_t miso_pin;
uint8_t ss_pin;
uint8_t spi_mode;
nrf_drv_spi_frequency_t frequency;
volatile union {
bool busy; // master
bool readable; // slave
} flag;
volatile uint8_t tx_buf;
volatile uint8_t rx_buf;
#if DEVICE_SPI_ASYNCH
uint32_t handler;
uint32_t event;
#endif
} spi_info_t;
static spi_info_t m_spi_info[SPI_COUNT];
typedef struct {
nrf_drv_spi_t master;
nrf_drv_spis_t slave;
} sdk_driver_instances_t;
void SPI0_TWI0_IRQHandler(void);
void SPI1_TWI1_IRQHandler(void);
void SPIM2_SPIS2_SPI2_IRQHandler(void);
static const peripheral_handler_desc_t spi_handler_desc[SPI_COUNT] = {
#if SPI0_ENABLED
{
SPI0_IRQ,
(uint32_t) SPI0_TWI0_IRQHandler
},
#endif
#if SPI1_ENABLED
{
SPI1_IRQ,
(uint32_t) SPI1_TWI1_IRQHandler
},
#endif
#if SPI2_ENABLED
{
SPI2_IRQ,
(uint32_t) SPIM2_SPIS2_SPI2_IRQHandler
},
#endif
};
static sdk_driver_instances_t m_instances[SPI_COUNT] = {
#if SPI0_ENABLED
{
NRF_DRV_SPI_INSTANCE(0),
NRF_DRV_SPIS_INSTANCE(0)
},
#endif
#if SPI1_ENABLED
{
NRF_DRV_SPI_INSTANCE(1),
NRF_DRV_SPIS_INSTANCE(1)
},
#endif
#if SPI2_ENABLED
{
NRF_DRV_SPI_INSTANCE(2),
NRF_DRV_SPIS_INSTANCE(2)
},
#endif
};
static void master_event_handler(uint8_t spi_idx,
nrf_drv_spi_evt_t const *p_event)
{
spi_info_t *p_spi_info = &m_spi_info[spi_idx];
if (p_event->type == NRF_DRV_SPI_EVENT_DONE) {
p_spi_info->flag.busy = false;
#if DEVICE_SPI_ASYNCH
if (p_spi_info->handler) {
void (*handler)(void) = (void (*)(void))p_spi_info->handler;
p_spi_info->handler = 0;
handler();
}
#endif
}
}
#define MASTER_EVENT_HANDLER(idx) \
static void master_event_handler_##idx(nrf_drv_spi_evt_t const *p_event) { \
master_event_handler(SPI##idx##_INSTANCE_INDEX, p_event); \
}
#if SPI0_ENABLED
MASTER_EVENT_HANDLER(0)
#endif
#if SPI1_ENABLED
MASTER_EVENT_HANDLER(1)
#endif
#if SPI2_ENABLED
MASTER_EVENT_HANDLER(2)
#endif
static nrf_drv_spi_handler_t const m_master_event_handlers[SPI_COUNT] = {
#if SPI0_ENABLED
master_event_handler_0,
#endif
#if SPI1_ENABLED
master_event_handler_1,
#endif
#if SPI2_ENABLED
master_event_handler_2,
#endif
};
static void slave_event_handler(uint8_t spi_idx,
nrf_drv_spis_event_t event)
{
spi_info_t *p_spi_info = &m_spi_info[spi_idx];
if (event.evt_type == NRF_DRV_SPIS_XFER_DONE) {
// Signal that there is some data received that could be read.
p_spi_info->flag.readable = true;
// And prepare for the next transfer.
// Previous data set in 'spi_slave_write' (if any) has been transmitted,
// now use the default one, until some new is set by 'spi_slave_write'.
p_spi_info->tx_buf = SPIS_DEFAULT_ORC;
nrf_drv_spis_buffers_set(&m_instances[spi_idx].slave,
(uint8_t const *)&p_spi_info->tx_buf, 1,
(uint8_t *)&p_spi_info->rx_buf, 1);
}
}
#define SLAVE_EVENT_HANDLER(idx) \
static void slave_event_handler_##idx(nrf_drv_spis_event_t event) { \
slave_event_handler(SPIS##idx##_INSTANCE_INDEX, event); \
}
#if SPIS0_ENABLED
SLAVE_EVENT_HANDLER(0)
#endif
#if SPIS1_ENABLED
SLAVE_EVENT_HANDLER(1)
#endif
#if SPIS2_ENABLED
SLAVE_EVENT_HANDLER(2)
#endif
static nrf_drv_spis_event_handler_t const m_slave_event_handlers[SPIS_COUNT] = {
#if SPIS0_ENABLED
slave_event_handler_0,
#endif
#if SPIS1_ENABLED
slave_event_handler_1,
#endif
#if SPIS2_ENABLED
slave_event_handler_2,
#endif
};
static void prepare_master_config(nrf_drv_spi_config_t *p_config,
spi_info_t const *p_spi_info)
{
p_config->sck_pin = p_spi_info->sck_pin;
p_config->mosi_pin = p_spi_info->mosi_pin;
p_config->miso_pin = p_spi_info->miso_pin;
p_config->ss_pin = p_spi_info->ss_pin;
p_config->frequency = p_spi_info->frequency;
p_config->mode = (nrf_drv_spi_mode_t)p_spi_info->spi_mode;
p_config->irq_priority = SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
p_config->orc = 0xFF;
p_config->bit_order = NRF_DRV_SPI_BIT_ORDER_MSB_FIRST;
}
static void prepare_slave_config(nrf_drv_spis_config_t *p_config,
spi_info_t const *p_spi_info)
{
p_config->sck_pin = p_spi_info->sck_pin;
p_config->mosi_pin = p_spi_info->mosi_pin;
p_config->miso_pin = p_spi_info->miso_pin;
p_config->csn_pin = p_spi_info->ss_pin;
p_config->mode = (nrf_drv_spis_mode_t)p_spi_info->spi_mode;
p_config->irq_priority = SPIS_DEFAULT_CONFIG_IRQ_PRIORITY;
p_config->orc = SPIS_DEFAULT_ORC;
p_config->def = SPIS_DEFAULT_DEF;
p_config->bit_order = NRF_DRV_SPIS_BIT_ORDER_MSB_FIRST;
p_config->csn_pullup = NRF_DRV_SPIS_DEFAULT_CSN_PULLUP;
p_config->miso_drive = NRF_DRV_SPIS_DEFAULT_MISO_DRIVE;
}
void spi_init(spi_t *obj,
PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
int i;
// This block is only a workaround that allows to create SPI object several
// times, what would be otherwise impossible in the current implementation
// of mbed driver that does not call spi_free() from SPI destructor.
// Once this mbed's imperfection is corrected, this block should be removed.
for (i = 0; i < SPI_COUNT; ++i) {
spi_info_t *p_spi_info = &m_spi_info[i];
if (p_spi_info->initialized &&
p_spi_info->mosi_pin == (uint8_t)mosi &&
p_spi_info->miso_pin == (uint8_t)miso &&
p_spi_info->sck_pin == (uint8_t)sclk &&
p_spi_info->ss_pin == (uint8_t)ssel) {
// Reuse the already allocated SPI instance (instead of allocating
// a new one), if it appears to be initialized with exactly the same
// pin assignments.
SPI_IDX(obj) = i;
return;
}
}
for (i = SPI_COUNT - 1; i >= 0; i--) {
spi_info_t *p_spi_info = &m_spi_info[i];
if (!p_spi_info->initialized) {
p_spi_info->sck_pin = (uint8_t)sclk;
p_spi_info->mosi_pin = (mosi != NC) ?
(uint8_t)mosi : NRF_DRV_SPI_PIN_NOT_USED;
p_spi_info->miso_pin = (miso != NC) ?
(uint8_t)miso : NRF_DRV_SPI_PIN_NOT_USED;
p_spi_info->ss_pin = (ssel != NC) ?
(uint8_t)ssel : NRF_DRV_SPI_PIN_NOT_USED;
p_spi_info->spi_mode = (uint8_t)NRF_DRV_SPI_MODE_0;
p_spi_info->frequency = NRF_DRV_SPI_FREQ_1M;
// By default each SPI instance is initialized to work as a master.
// Should the slave mode be used, the instance will be reconfigured
// appropriately in 'spi_format'.
nrf_drv_spi_config_t config;
prepare_master_config(&config, p_spi_info);
nrf_drv_spi_t const *p_spi = &m_instances[i].master;
ret_code_t ret_code = nrf_drv_spi_init(p_spi,
&config, m_master_event_handlers[i]);
if (ret_code == NRF_SUCCESS) {
p_spi_info->initialized = true;
p_spi_info->master = true;
p_spi_info->flag.busy = false;
#if DEVICE_SPI_ASYNCH
p_spi_info->handler = 0;
#endif
SPI_IDX(obj) = i;
NVIC_SetVector(spi_handler_desc[i].IRQn, spi_handler_desc[i].vector);
return;
}
}
}
// No available peripheral
error("No available SPI peripheral\r\n");
}
void spi_free(spi_t *obj)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
if (p_spi_info->master) {
nrf_drv_spi_uninit(MASTER_INST(obj));
}
else {
nrf_drv_spis_uninit(SLAVE_INST(obj));
}
p_spi_info->initialized = false;
}
int spi_busy(spi_t *obj)
{
return (int)(SPI_INFO(obj)->flag.busy);
}
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
if (bits != 8) {
error("Only 8-bits SPI is supported\r\n");
}
if (mode > 3) {
error("SPI format error\r\n");
}
spi_info_t *p_spi_info = SPI_INFO(obj);
if (slave)
{
nrf_drv_spis_mode_t spi_modes[4] = {
NRF_DRV_SPIS_MODE_0,
NRF_DRV_SPIS_MODE_1,
NRF_DRV_SPIS_MODE_2,
NRF_DRV_SPIS_MODE_3,
};
nrf_drv_spis_mode_t new_mode = spi_modes[mode];
// If the peripheral is currently working as a master, the SDK driver
// it uses needs to be switched from SPI to SPIS.
if (p_spi_info->master) {
nrf_drv_spi_uninit(MASTER_INST(obj));
}
// I the SPI mode has to be changed, the SDK's SPIS driver needs to be
// re-initialized (there is no other way to change its configuration).
else if (p_spi_info->spi_mode != (uint8_t)new_mode) {
nrf_drv_spis_uninit(SLAVE_INST(obj));
}
else {
return;
}
p_spi_info->spi_mode = (uint8_t)new_mode;
p_spi_info->master = false;
p_spi_info->flag.readable = false;
// Initialize SDK's SPIS driver with the new configuration.
nrf_drv_spis_config_t config;
prepare_slave_config(&config, p_spi_info);
(void)nrf_drv_spis_init(SLAVE_INST(obj), &config,
m_slave_event_handlers[SPI_IDX(obj)]);
// Prepare the slave for transfer.
p_spi_info->tx_buf = SPIS_DEFAULT_ORC;
nrf_drv_spis_buffers_set(SLAVE_INST(obj),
(uint8_t const *)&p_spi_info->tx_buf, 1,
(uint8_t *)&p_spi_info->rx_buf, 1);
}
else // master
{
nrf_drv_spi_mode_t spi_modes[4] = {
NRF_DRV_SPI_MODE_0,
NRF_DRV_SPI_MODE_1,
NRF_DRV_SPI_MODE_2,
NRF_DRV_SPI_MODE_3,
};
nrf_drv_spi_mode_t new_mode = spi_modes[mode];
// If the peripheral is currently working as a slave, the SDK driver
// it uses needs to be switched from SPIS to SPI.
if (!p_spi_info->master) {
nrf_drv_spis_uninit(SLAVE_INST(obj));
}
// I the SPI mode has to be changed, the SDK's SPI driver needs to be
// re-initialized (there is no other way to change its configuration).
else if (p_spi_info->spi_mode != (uint8_t)new_mode) {
nrf_drv_spi_uninit(MASTER_INST(obj));
}
else {
return;
}
p_spi_info->spi_mode = (uint8_t)new_mode;
p_spi_info->master = true;
p_spi_info->flag.busy = false;
// Initialize SDK's SPI driver with the new configuration.
nrf_drv_spi_config_t config;
prepare_master_config(&config, p_spi_info);
(void)nrf_drv_spi_init(MASTER_INST(obj), &config,
m_master_event_handlers[SPI_IDX(obj)]);
}
}
static nrf_drv_spi_frequency_t freq_translate(int hz)
{
nrf_drv_spi_frequency_t frequency;
if (hz<250000) { //125Kbps
frequency = NRF_DRV_SPI_FREQ_125K;
} else if (hz<500000) { //250Kbps
frequency = NRF_DRV_SPI_FREQ_250K;
} else if (hz<1000000) { //500Kbps
frequency = NRF_DRV_SPI_FREQ_500K;
} else if (hz<2000000) { //1Mbps
frequency = NRF_DRV_SPI_FREQ_1M;
} else if (hz<4000000) { //2Mbps
frequency = NRF_DRV_SPI_FREQ_2M;
} else if (hz<8000000) { //4Mbps
frequency = NRF_DRV_SPI_FREQ_4M;
} else { //8Mbps
frequency = NRF_DRV_SPI_FREQ_8M;
}
return frequency;
}
void spi_frequency(spi_t *obj, int hz)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
nrf_drv_spi_frequency_t new_frequency = freq_translate(hz);
if (p_spi_info->master)
{
if (p_spi_info->frequency != new_frequency) {
p_spi_info->frequency = new_frequency;
nrf_drv_spi_config_t config;
prepare_master_config(&config, p_spi_info);
nrf_drv_spi_t const *p_spi = MASTER_INST(obj);
nrf_drv_spi_uninit(p_spi);
(void)nrf_drv_spi_init(p_spi, &config,
m_master_event_handlers[SPI_IDX(obj)]);
}
}
// There is no need to set anything in slaves when it comes to frequency,
// since slaves just synchronize with the clock provided by a master.
}
int spi_master_write(spi_t *obj, int value)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
#if DEVICE_SPI_ASYNCH
while (p_spi_info->flag.busy) {
}
#endif
p_spi_info->tx_buf = value;
p_spi_info->flag.busy = true;
(void)nrf_drv_spi_transfer(MASTER_INST(obj),
(uint8_t const *)&p_spi_info->tx_buf, 1,
(uint8_t *)&p_spi_info->rx_buf, 1);
while (p_spi_info->flag.busy) {
}
return p_spi_info->rx_buf;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill) {
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
MBED_ASSERT(!p_spi_info->master);
return p_spi_info->flag.readable;
;
}
int spi_slave_read(spi_t *obj)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
MBED_ASSERT(!p_spi_info->master);
while (!p_spi_info->flag.readable) {
}
p_spi_info->flag.readable = false;
return p_spi_info->rx_buf;
}
void spi_slave_write(spi_t *obj, int value)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
MBED_ASSERT(!p_spi_info->master);
p_spi_info->tx_buf = (uint8_t)value;
}
#if DEVICE_SPI_ASYNCH
void spi_master_transfer(spi_t *obj,
const void *tx, size_t tx_length,
void *rx, size_t rx_length, uint8_t bit_width,
uint32_t handler, uint32_t event, DMAUsage hint)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
MBED_ASSERT(p_spi_info->master);
(void)hint;
(void)bit_width;
p_spi_info->handler = handler;
p_spi_info->event = event;
p_spi_info->flag.busy = true;
(void)nrf_drv_spi_transfer(MASTER_INST(obj),
(uint8_t const *)tx, tx_length,
(uint8_t *)rx, rx_length);
}
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
MBED_ASSERT(p_spi_info->master);
return p_spi_info->event & SPI_EVENT_COMPLETE;
}
uint8_t spi_active(spi_t *obj)
{
spi_info_t *p_spi_info = SPI_INFO(obj);
MBED_ASSERT(p_spi_info->master);
return p_spi_info->flag.busy;
}
void spi_abort_asynch(spi_t *obj)
{
MBED_ASSERT(SPI_INFO(obj)->master);
nrf_drv_spi_abort(MASTER_INST(obj));
}
#endif // DEVICE_SPI_ASYNCH
#endif // DEVICE_SPI