mirror of https://github.com/ARMmbed/mbed-os.git
666 lines
22 KiB
C
666 lines
22 KiB
C
/*
|
|
* Copyright (c) 2013 Nordic Semiconductor ASA
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this list
|
|
* of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA
|
|
* integrated circuit in a product or a software update for such product, must reproduce
|
|
* the above copyright notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* 4. This software, with or without modification, must only be used with a
|
|
* Nordic Semiconductor ASA integrated circuit.
|
|
*
|
|
* 5. Any software provided in binary or object form under this license must not be reverse
|
|
* engineered, decompiled, modified and/or disassembled.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include "serial_api.h"
|
|
|
|
#if DEVICE_SERIAL
|
|
|
|
#include <string.h>
|
|
#include "mbed_assert.h"
|
|
#include "mbed_error.h"
|
|
#include "nrf_uart.h"
|
|
#include "nrf_drv_common.h"
|
|
#include "app_util_platform.h"
|
|
#include "nrf_gpio.h"
|
|
#include "sdk_config.h"
|
|
|
|
#define UART_INSTANCE_COUNT 1
|
|
#define UART_INSTANCE NRF_UART0
|
|
#define UART_IRQn UART0_IRQn
|
|
#define UART_IRQ_HANDLER UART0_IRQHandler
|
|
#define UART_INSTANCE_ID 0
|
|
#define UART_CB uart_cb[UART_INSTANCE_ID]
|
|
|
|
#define UART_DEFAULT_BAUDRATE UART_DEFAULT_CONFIG_BAUDRATE
|
|
#define UART_DEFAULT_PARITY UART_DEFAULT_CONFIG_PARITY
|
|
|
|
// expected the macro from mbed configuration system
|
|
#ifndef MBED_CONF_NORDIC_UART_HWFC
|
|
#define MBED_CONF_NORDIC_UART_HWFC 1
|
|
#warning None of UART flow control configuration (expected macro MBED_CONF_NORDIC_UART_HWFC). The RTSCTS flow control is used by default .
|
|
#endif
|
|
|
|
#if MBED_CONF_NORDIC_UART_HWFC == 1
|
|
#define UART_DEFAULT_HWFC UART_DEFAULT_CONFIG_HWFC
|
|
#else
|
|
#define UART_DEFAULT_HWFC NRF_UART_HWFC_DISABLED
|
|
#endif
|
|
|
|
#define UART_DEFAULT_CTS CTS_PIN_NUMBER
|
|
#define UART_DEFAULT_RTS RTS_PIN_NUMBER
|
|
|
|
#ifdef NRF51
|
|
#define NRFx_MBED_UART_IRQ_PRIORITY APP_IRQ_PRIORITY_LOW
|
|
#elif defined(NRF52) || defined(NRF52840_XXAA)
|
|
#define NRFx_MBED_UART_IRQ_PRIORITY APP_IRQ_PRIORITY_LOWEST
|
|
#endif
|
|
|
|
// Required by "retarget.cpp".
|
|
int stdio_uart_inited = 0;
|
|
serial_t stdio_uart;
|
|
|
|
typedef struct {
|
|
bool initialized;
|
|
uint32_t irq_context;
|
|
uart_irq_handler irq_handler;
|
|
|
|
uint32_t pselrxd;
|
|
uint32_t pseltxd;
|
|
uint32_t pselcts;
|
|
uint32_t pselrts;
|
|
nrf_uart_hwfc_t hwfc;
|
|
nrf_uart_parity_t parity;
|
|
nrf_uart_baudrate_t baudrate;
|
|
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
bool volatile rx_active;
|
|
uint8_t *rx_buffer;
|
|
size_t rx_length;
|
|
size_t rx_pos;
|
|
void (*rx_asynch_handler)();
|
|
uint8_t char_match;
|
|
|
|
bool volatile tx_active;
|
|
const uint8_t *tx_buffer;
|
|
size_t tx_length;
|
|
size_t tx_pos;
|
|
void (*tx_asynch_handler)();
|
|
|
|
uint32_t events_wanted;
|
|
uint32_t events_occured;
|
|
|
|
#define UART_IRQ_TX 1
|
|
#define UART_IRQ_RX 2
|
|
uint8_t irq_enabled;
|
|
#endif // DEVICE_SERIAL_ASYNCH
|
|
} uart_ctlblock_t;
|
|
|
|
static uart_ctlblock_t uart_cb[UART_INSTANCE_COUNT];
|
|
|
|
static void internal_set_hwfc(FlowControl type,
|
|
PinName rxflow, PinName txflow);
|
|
|
|
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
static void end_asynch_rx(void)
|
|
{
|
|
// If RX interrupt is activated for synchronous operations,
|
|
// don't disable it, just stop handling it here.
|
|
if (!(UART_CB.irq_enabled & UART_IRQ_RX)) {
|
|
nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY);
|
|
}
|
|
UART_CB.rx_active = false;
|
|
}
|
|
static void end_asynch_tx(void)
|
|
{
|
|
// If TX interrupt is activated for synchronous operations,
|
|
// don't disable it, just stop handling it here.
|
|
if (!(UART_CB.irq_enabled & UART_IRQ_TX)) {
|
|
nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY);
|
|
}
|
|
UART_CB.tx_active = false;
|
|
}
|
|
#endif // DEVICE_SERIAL_ASYNCH
|
|
|
|
void UART_IRQ_HANDLER(void)
|
|
{
|
|
if (nrf_uart_int_enable_check(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY) &&
|
|
nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_RXDRDY)) {
|
|
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
if (UART_CB.rx_active) {
|
|
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_RXDRDY);
|
|
|
|
uint8_t rx_data = nrf_uart_rxd_get(UART_INSTANCE);
|
|
UART_CB.rx_buffer[UART_CB.rx_pos] = rx_data;
|
|
|
|
bool end_rx = false;
|
|
// If character matching should be performed, check if the current
|
|
// data matches the given one.
|
|
if (UART_CB.char_match != SERIAL_RESERVED_CHAR_MATCH &&
|
|
rx_data == UART_CB.char_match) {
|
|
// If it does, report the match and abort further receiving.
|
|
UART_CB.events_occured |= SERIAL_EVENT_RX_CHARACTER_MATCH;
|
|
if (UART_CB.events_wanted & SERIAL_EVENT_RX_CHARACTER_MATCH) {
|
|
end_rx = true;
|
|
}
|
|
}
|
|
if (++UART_CB.rx_pos >= UART_CB.rx_length) {
|
|
UART_CB.events_occured |= SERIAL_EVENT_RX_COMPLETE;
|
|
end_rx = true;
|
|
}
|
|
if (end_rx) {
|
|
end_asynch_rx();
|
|
|
|
if (UART_CB.rx_asynch_handler) {
|
|
// Use local variable to make it possible to start a next
|
|
// transfer from callback routine.
|
|
void (*handler)() = UART_CB.rx_asynch_handler;
|
|
UART_CB.rx_asynch_handler = NULL;
|
|
handler();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
|
|
if (UART_CB.irq_handler) {
|
|
UART_CB.irq_handler(UART_CB.irq_context, RxIrq);
|
|
}
|
|
}
|
|
|
|
if (nrf_uart_int_enable_check(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY) &&
|
|
nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_TXDRDY)) {
|
|
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
if (UART_CB.tx_active) {
|
|
if (UART_CB.tx_pos < UART_CB.tx_length) {
|
|
// When there is still something to send, clear the TXDRDY event
|
|
// and put next byte to transmitter.
|
|
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_TXDRDY);
|
|
nrf_uart_txd_set(UART_INSTANCE,
|
|
UART_CB.tx_buffer[UART_CB.tx_pos]);
|
|
UART_CB.tx_pos++;
|
|
}
|
|
else {
|
|
// When the TXDRDY event is set after the last byte to be sent
|
|
// has been passed to the transmitter, the job is done and TX
|
|
// complete can be indicated.
|
|
// Don't clear the TXDRDY event, it needs to remain set for the
|
|
// 'serial_writable' function to work properly.
|
|
end_asynch_tx();
|
|
|
|
UART_CB.events_occured |= SERIAL_EVENT_TX_COMPLETE;
|
|
if (UART_CB.tx_asynch_handler) {
|
|
// Use local variable to make it possible to start a next
|
|
// transfer from callback routine.
|
|
void (*handler)() = UART_CB.tx_asynch_handler;
|
|
UART_CB.tx_asynch_handler = NULL;
|
|
handler();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
|
|
if (UART_CB.irq_handler) {
|
|
UART_CB.irq_handler(UART_CB.irq_context, TxIrq);
|
|
}
|
|
}
|
|
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
if (nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_ERROR)) {
|
|
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_ERROR);
|
|
|
|
uint8_t errorsrc = nrf_uart_errorsrc_get_and_clear(UART_INSTANCE);
|
|
if (UART_CB.rx_asynch_handler) {
|
|
UART_CB.events_occured |= SERIAL_EVENT_ERROR;
|
|
if (errorsrc & NRF_UART_ERROR_PARITY_MASK) {
|
|
UART_CB.events_occured |= SERIAL_EVENT_RX_PARITY_ERROR;
|
|
}
|
|
if (errorsrc & NRF_UART_ERROR_FRAMING_MASK) {
|
|
UART_CB.events_occured |= SERIAL_EVENT_RX_FRAMING_ERROR;
|
|
}
|
|
if (errorsrc & NRF_UART_ERROR_OVERRUN_MASK) {
|
|
UART_CB.events_occured |= SERIAL_EVENT_RX_OVERRUN_ERROR;
|
|
}
|
|
UART_CB.rx_asynch_handler();
|
|
}
|
|
}
|
|
#endif // DEVICE_SERIAL_ASYNCH
|
|
}
|
|
|
|
void serial_init(serial_t *obj, PinName tx, PinName rx) {
|
|
|
|
NVIC_SetVector(UART0_IRQn, (uint32_t) UART0_IRQHandler);
|
|
|
|
|
|
UART_CB.pseltxd =
|
|
(tx == NC) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)tx;
|
|
UART_CB.pselrxd =
|
|
(rx == NC) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)rx;
|
|
if (UART_CB.pseltxd != NRF_UART_PSEL_DISCONNECTED) {
|
|
nrf_gpio_pin_set(UART_CB.pseltxd);
|
|
nrf_gpio_cfg_output(UART_CB.pseltxd);
|
|
}
|
|
if (UART_CB.pselrxd != NRF_UART_PSEL_DISCONNECTED) {
|
|
nrf_gpio_cfg_input(UART_CB.pselrxd, NRF_GPIO_PIN_NOPULL);
|
|
}
|
|
|
|
if (UART_CB.initialized) {
|
|
// For already initialized peripheral it is sufficient to reconfigure
|
|
// RX/TX pins only.
|
|
|
|
// Ensure that there is no unfinished TX transfer.
|
|
while (!serial_writable(obj)) {
|
|
}
|
|
// UART pins can be configured only when the peripheral is disabled.
|
|
nrf_uart_disable(UART_INSTANCE);
|
|
nrf_uart_txrx_pins_set(UART_INSTANCE, UART_CB.pseltxd, UART_CB.pselrxd);
|
|
nrf_uart_enable(UART_INSTANCE);
|
|
}
|
|
else {
|
|
UART_CB.baudrate = UART_DEFAULT_BAUDRATE;
|
|
UART_CB.parity = UART_DEFAULT_PARITY;
|
|
UART_CB.hwfc = UART_DEFAULT_HWFC;
|
|
UART_CB.pselcts = UART_DEFAULT_CTS;
|
|
UART_CB.pselrts = UART_DEFAULT_RTS;
|
|
|
|
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_RXDRDY);
|
|
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_TXDRDY);
|
|
nrf_uart_task_trigger(UART_INSTANCE, NRF_UART_TASK_STARTRX);
|
|
nrf_uart_task_trigger(UART_INSTANCE, NRF_UART_TASK_STARTTX);
|
|
|
|
nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY |
|
|
NRF_UART_INT_MASK_TXDRDY);
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_ERROR);
|
|
#endif
|
|
nrf_drv_common_irq_enable(UART_IRQn, NRFx_MBED_UART_IRQ_PRIORITY);
|
|
|
|
// TX interrupt needs to be signaled when transmitter buffer is empty,
|
|
// so a dummy transmission is needed to get the TXDRDY event initially
|
|
// set.
|
|
nrf_uart_configure(UART_INSTANCE,
|
|
NRF_UART_PARITY_EXCLUDED, NRF_UART_HWFC_DISABLED);
|
|
// Use maximum baud rate, so this dummy transmission takes as little
|
|
// time as possible.
|
|
nrf_uart_baudrate_set(UART_INSTANCE, NRF_UART_BAUDRATE_1000000);
|
|
// Perform it with disconnected TX pin, so nothing actually comes out
|
|
// of the device.
|
|
nrf_uart_txrx_pins_disconnect(UART_INSTANCE);
|
|
nrf_uart_hwfc_pins_disconnect(UART_INSTANCE);
|
|
nrf_uart_enable(UART_INSTANCE);
|
|
nrf_uart_txd_set(UART_INSTANCE, 0);
|
|
while (!nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_TXDRDY)) {
|
|
}
|
|
nrf_uart_disable(UART_INSTANCE);
|
|
|
|
// Now everything is prepared to set the default configuration and
|
|
// connect the peripheral to actual pins.
|
|
nrf_uart_txrx_pins_set(UART_INSTANCE, UART_CB.pseltxd, UART_CB.pselrxd);
|
|
nrf_uart_baudrate_set(UART_INSTANCE, UART_CB.baudrate);
|
|
nrf_uart_configure(UART_INSTANCE, UART_CB.parity, UART_CB.hwfc);
|
|
if (UART_CB.hwfc == NRF_UART_HWFC_ENABLED) {
|
|
internal_set_hwfc(FlowControlRTSCTS,
|
|
(PinName) UART_CB.pselrts, (PinName) UART_CB.pselcts);
|
|
}
|
|
|
|
nrf_uart_enable(UART_INSTANCE);
|
|
|
|
UART_CB.initialized = true;
|
|
}
|
|
|
|
if (tx == STDIO_UART_TX && rx == STDIO_UART_RX) {
|
|
stdio_uart_inited = 1;
|
|
memcpy(&stdio_uart, obj, sizeof(serial_t));
|
|
}
|
|
else {
|
|
stdio_uart_inited = 0;
|
|
}
|
|
}
|
|
|
|
void serial_free(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
|
|
if (UART_CB.initialized) {
|
|
nrf_uart_disable(UART_INSTANCE);
|
|
nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY |
|
|
NRF_UART_INT_MASK_TXDRDY |
|
|
NRF_UART_INT_MASK_ERROR);
|
|
nrf_drv_common_irq_disable(UART_IRQn);
|
|
UART_CB.initialized = false;
|
|
|
|
// There is only one UART instance, thus at this point the stdio UART
|
|
// can no longer be initialized.
|
|
stdio_uart_inited = 0;
|
|
}
|
|
}
|
|
|
|
void serial_baud(serial_t *obj, int baudrate)
|
|
{
|
|
// nrf_uart_baudrate_set() is not used here (registers are accessed
|
|
// directly) to make it possible to set special baud rates like 56000
|
|
// or 31250.
|
|
|
|
static uint32_t const acceptedSpeeds[][2] = {
|
|
{ 1200, UART_BAUDRATE_BAUDRATE_Baud1200 },
|
|
{ 2400, UART_BAUDRATE_BAUDRATE_Baud2400 },
|
|
{ 4800, UART_BAUDRATE_BAUDRATE_Baud4800 },
|
|
{ 9600, UART_BAUDRATE_BAUDRATE_Baud9600 },
|
|
{ 14400, UART_BAUDRATE_BAUDRATE_Baud14400 },
|
|
{ 19200, UART_BAUDRATE_BAUDRATE_Baud19200 },
|
|
{ 28800, UART_BAUDRATE_BAUDRATE_Baud28800 },
|
|
{ 31250, (0x00800000UL) /* 31250 baud */ },
|
|
{ 38400, UART_BAUDRATE_BAUDRATE_Baud38400 },
|
|
{ 56000, (0x00E51000UL) /* 56000 baud */ },
|
|
{ 57600, UART_BAUDRATE_BAUDRATE_Baud57600 },
|
|
{ 76800, UART_BAUDRATE_BAUDRATE_Baud76800 },
|
|
{ 115200, UART_BAUDRATE_BAUDRATE_Baud115200 },
|
|
{ 230400, UART_BAUDRATE_BAUDRATE_Baud230400 },
|
|
{ 250000, UART_BAUDRATE_BAUDRATE_Baud250000 },
|
|
{ 460800, UART_BAUDRATE_BAUDRATE_Baud460800 },
|
|
{ 921600, UART_BAUDRATE_BAUDRATE_Baud921600 },
|
|
{ 1000000, UART_BAUDRATE_BAUDRATE_Baud1M }
|
|
};
|
|
|
|
if (baudrate <= 1200) {
|
|
UART_INSTANCE->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200;
|
|
return;
|
|
}
|
|
|
|
int const item_cnt = sizeof(acceptedSpeeds)/sizeof(acceptedSpeeds[0]);
|
|
for (int i = 1; i < item_cnt; i++) {
|
|
if ((uint32_t)baudrate < acceptedSpeeds[i][0]) {
|
|
UART_INSTANCE->BAUDRATE = acceptedSpeeds[i - 1][1];
|
|
return;
|
|
}
|
|
}
|
|
|
|
UART_INSTANCE->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1M;
|
|
}
|
|
|
|
void serial_format(serial_t *obj,
|
|
int data_bits, SerialParity parity, int stop_bits)
|
|
{
|
|
(void)obj;
|
|
|
|
if (data_bits != 8) {
|
|
error("UART supports only 8 data bits.\r\n");
|
|
}
|
|
if (stop_bits != 1) {
|
|
error("UART supports only 1 stop bits.\r\n");
|
|
}
|
|
if (parity == ParityNone) {
|
|
UART_CB.parity = NRF_UART_PARITY_EXCLUDED;
|
|
} else if (parity == ParityEven) {
|
|
UART_CB.parity = NRF_UART_PARITY_INCLUDED;
|
|
} else {
|
|
error("UART supports only even parity.\r\n");
|
|
}
|
|
|
|
// Reconfigure UART peripheral.
|
|
nrf_uart_configure(UART_INSTANCE, UART_CB.parity, UART_CB.hwfc);
|
|
}
|
|
|
|
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
|
|
{
|
|
(void)obj;
|
|
UART_CB.irq_handler = handler;
|
|
UART_CB.irq_context = id;
|
|
}
|
|
|
|
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
|
|
{
|
|
(void)obj;
|
|
if (enable) {
|
|
switch (irq) {
|
|
case RxIrq:
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
UART_CB.irq_enabled |= UART_IRQ_RX;
|
|
#endif
|
|
nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY);
|
|
break;
|
|
|
|
case TxIrq:
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
UART_CB.irq_enabled |= UART_IRQ_TX;
|
|
#endif
|
|
nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (irq) {
|
|
case RxIrq:
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
UART_CB.irq_enabled &= ~UART_IRQ_RX;
|
|
if (!UART_CB.rx_active)
|
|
#endif
|
|
{
|
|
nrf_uart_int_disable(UART_INSTANCE,
|
|
NRF_UART_INT_MASK_RXDRDY);
|
|
}
|
|
break;
|
|
|
|
case TxIrq:
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
UART_CB.irq_enabled &= ~UART_IRQ_TX;
|
|
if (!UART_CB.tx_active)
|
|
#endif
|
|
{
|
|
nrf_uart_int_disable(UART_INSTANCE,
|
|
NRF_UART_INT_MASK_TXDRDY);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int serial_getc(serial_t *obj)
|
|
{
|
|
while (!serial_readable(obj)) {
|
|
}
|
|
|
|
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_RXDRDY);
|
|
return nrf_uart_rxd_get(UART_INSTANCE);
|
|
}
|
|
|
|
void serial_putc(serial_t *obj, int c)
|
|
{
|
|
while (!serial_writable(obj)) {
|
|
}
|
|
|
|
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_TXDRDY);
|
|
nrf_uart_txd_set(UART_INSTANCE, (uint8_t)c);
|
|
}
|
|
|
|
int serial_readable(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
if (UART_CB.rx_active) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
return (nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_RXDRDY));
|
|
}
|
|
|
|
int serial_writable(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
if (UART_CB.tx_active) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
return (nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_TXDRDY));
|
|
}
|
|
|
|
void serial_break_set(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
nrf_uart_task_trigger(UART_INSTANCE, NRF_UART_TASK_SUSPEND);
|
|
nrf_uart_txrx_pins_disconnect(UART_INSTANCE);
|
|
nrf_gpio_pin_clear(UART_CB.pseltxd);
|
|
}
|
|
|
|
void serial_break_clear(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
nrf_gpio_pin_set(UART_CB.pseltxd);
|
|
nrf_uart_txrx_pins_set(UART_INSTANCE, UART_CB.pseltxd, UART_CB.pselrxd);
|
|
nrf_uart_task_trigger(UART_INSTANCE, NRF_UART_TASK_STARTRX);
|
|
nrf_uart_task_trigger(UART_INSTANCE, NRF_UART_TASK_STARTTX);
|
|
}
|
|
|
|
|
|
static void internal_set_hwfc(FlowControl type,
|
|
PinName rxflow, PinName txflow)
|
|
{
|
|
UART_CB.pselrts =
|
|
((rxflow == NC) || (type == FlowControlCTS)) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)rxflow;
|
|
UART_CB.pselcts =
|
|
((txflow == NC) || (type == FlowControlRTS)) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)txflow;
|
|
|
|
if (UART_CB.pselrts != NRF_UART_PSEL_DISCONNECTED) {
|
|
nrf_gpio_pin_set(UART_CB.pselrts);
|
|
nrf_gpio_cfg_output(UART_CB.pselrts);
|
|
}
|
|
if (UART_CB.pselcts != NRF_UART_PSEL_DISCONNECTED) {
|
|
nrf_gpio_cfg_input(UART_CB.pselcts, NRF_GPIO_PIN_NOPULL);
|
|
}
|
|
|
|
UART_CB.hwfc = (nrf_uart_hwfc_t)((type == FlowControlNone)? NRF_UART_HWFC_DISABLED : UART_DEFAULT_CONFIG_HWFC);
|
|
|
|
nrf_uart_configure(UART_INSTANCE, UART_CB.parity, UART_CB.hwfc);
|
|
nrf_uart_hwfc_pins_set(UART_INSTANCE, UART_CB.pselrts, UART_CB.pselcts);
|
|
}
|
|
|
|
void serial_set_flow_control(serial_t *obj, FlowControl type,
|
|
PinName rxflow, PinName txflow)
|
|
{
|
|
(void)obj;
|
|
|
|
nrf_uart_disable(UART_INSTANCE);
|
|
internal_set_hwfc(type, rxflow, txflow);
|
|
nrf_uart_enable(UART_INSTANCE);
|
|
}
|
|
|
|
|
|
void serial_clear(serial_t *obj) {
|
|
(void)obj;
|
|
}
|
|
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
|
|
int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length,
|
|
uint8_t tx_width, uint32_t handler, uint32_t event,
|
|
DMAUsage hint)
|
|
{
|
|
(void)obj;
|
|
(void)tx_width;
|
|
(void)hint;
|
|
if (UART_CB.tx_active || !tx_length) {
|
|
return 0;
|
|
}
|
|
|
|
UART_CB.tx_buffer = tx;
|
|
UART_CB.tx_length = tx_length;
|
|
UART_CB.tx_pos = 0;
|
|
UART_CB.tx_asynch_handler = (void(*)())handler;
|
|
UART_CB.events_wanted &= ~SERIAL_EVENT_TX_ALL;
|
|
UART_CB.events_wanted |= event;
|
|
|
|
UART_CB.tx_active = true;
|
|
nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length,
|
|
uint8_t rx_width, uint32_t handler, uint32_t event,
|
|
uint8_t char_match, DMAUsage hint)
|
|
{
|
|
(void)obj;
|
|
(void)rx_width;
|
|
(void)hint;
|
|
if (UART_CB.rx_active || !rx_length) {
|
|
return;
|
|
}
|
|
|
|
UART_CB.rx_buffer = rx;
|
|
UART_CB.rx_length = rx_length;
|
|
UART_CB.rx_pos = 0;
|
|
UART_CB.rx_asynch_handler = (void(*)())handler;
|
|
UART_CB.events_wanted &= ~SERIAL_EVENT_RX_ALL;
|
|
UART_CB.events_wanted |= event;
|
|
UART_CB.char_match = char_match;
|
|
|
|
UART_CB.rx_active = true;
|
|
nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY);
|
|
}
|
|
|
|
uint8_t serial_tx_active(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
return UART_CB.tx_active;
|
|
}
|
|
|
|
uint8_t serial_rx_active(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
return UART_CB.rx_active;
|
|
}
|
|
|
|
int serial_irq_handler_asynch(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
uint32_t events_to_report = UART_CB.events_wanted & UART_CB.events_occured;
|
|
UART_CB.events_occured &= (~events_to_report);
|
|
return events_to_report;
|
|
}
|
|
|
|
void serial_tx_abort_asynch(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
end_asynch_tx();
|
|
UART_CB.tx_asynch_handler = NULL;
|
|
}
|
|
|
|
void serial_rx_abort_asynch(serial_t *obj)
|
|
{
|
|
(void)obj;
|
|
end_asynch_rx();
|
|
UART_CB.rx_asynch_handler = NULL;
|
|
}
|
|
|
|
#endif // DEVICE_SERIAL_ASYNCH
|
|
|
|
#endif // DEVICE_SERIAL
|