mbed-os/targets/TARGET_Maxim/TARGET_MAX32625/device/system_max32625.c

264 lines
11 KiB
C

/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
******************************************************************************/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "max32625.h"
#include "clkman_regs.h"
#include "adc_regs.h"
#include "pwrseq_regs.h"
#include "pwrman_regs.h"
#include "icc_regs.h"
#include "flc_regs.h"
#include "rtc_regs.h"
#include "trim_regs.h"
#ifndef RO_FREQ
#define RO_FREQ 96000000
#endif
#ifndef LP0_POST_HOOK
#define LP0_POST_HOOK
#endif
// NOTE: Setting the CMSIS SystemCoreClock value to the actual value it will
// be AFTER SystemInit() runs. This is required so the hal drivers will have
// the correct value when the DATA sections are initialized.
uint32_t SystemCoreClock = RO_FREQ;
void SystemCoreClockUpdate(void)
{
if (MXC_PWRSEQ->reg0 & MXC_F_PWRSEQ_REG0_PWR_RCEN_RUN) {
/* 4 MHz source */
if (MXC_PWRSEQ->reg3 & MXC_F_PWRSEQ_REG3_PWR_RC_DIV) {
SystemCoreClock = (4000000 / (0x1 << ((MXC_PWRSEQ->reg3 & MXC_F_PWRSEQ_REG3_PWR_RC_DIV) >>
MXC_F_PWRSEQ_REG3_PWR_RC_DIV_POS)));
} else {
SystemCoreClock = 4000000;
}
} else {
/* 96 MHz source */
if (MXC_PWRSEQ->reg3 & MXC_F_PWRSEQ_REG3_PWR_RO_DIV) {
SystemCoreClock = (RO_FREQ / (0x1 << ((MXC_PWRSEQ->reg3 & MXC_F_PWRSEQ_REG3_PWR_RO_DIV) >>
MXC_F_PWRSEQ_REG3_PWR_RO_DIV_POS)));
} else {
SystemCoreClock = RO_FREQ;
}
}
}
void CLKMAN_TrimRO(void)
{
uint32_t running;
uint32_t trim;
/* Step 1: enable 32KHz RTC */
running = MXC_PWRSEQ->reg0 & MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN;
MXC_PWRSEQ->reg0 |= MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN;
/* Wait for RTC warm-up */
while(MXC_RTCCFG->osc_ctrl & MXC_F_RTC_OSC_CTRL_OSC_WARMUP_ENABLE) {}
/* Step 2: enable RO calibration complete interrupt */
MXC_ADC->intr |= MXC_F_ADC_INTR_RO_CAL_DONE_IE;
/* Step 3: clear RO calibration complete interrupt */
MXC_ADC->intr |= MXC_F_ADC_INTR_RO_CAL_DONE_IF;
/* Step 4: -- NO LONGER NEEDED / HANDLED BY STARTUP CODE -- */
/* Step 5: write initial trim to frequency calibration initial condition register */
trim = (MXC_PWRSEQ->reg6 & MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF) >> MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF_POS;
MXC_ADC->ro_cal1 = (MXC_ADC->ro_cal1 & ~MXC_F_ADC_RO_CAL1_TRM_INIT) |
((trim << MXC_F_ADC_RO_CAL1_TRM_INIT_POS) & MXC_F_ADC_RO_CAL1_TRM_INIT);
/* Step 6: load initial trim to active frequency trim register */
MXC_ADC->ro_cal0 |= MXC_F_ADC_RO_CAL0_RO_CAL_LOAD;
/* Step 7: enable frequency loop to control RO trim */
MXC_ADC->ro_cal0 |= MXC_F_ADC_RO_CAL0_RO_CAL_EN;
/* Step 8: run frequency calibration in atomic mode */
MXC_ADC->ro_cal0 |= MXC_F_ADC_RO_CAL0_RO_CAL_ATOMIC;
/* Step 9: waiting for ro_cal_done flag */
while(!(MXC_ADC->intr & MXC_F_ADC_INTR_RO_CAL_DONE_IF));
/* Step 10: stop frequency calibration */
MXC_ADC->ro_cal0 &= ~MXC_F_ADC_RO_CAL0_RO_CAL_RUN;
/* Step 11: disable RO calibration complete interrupt */
MXC_ADC->intr &= ~MXC_F_ADC_INTR_RO_CAL_DONE_IE;
/* Step 12: read final frequency trim value */
trim = (MXC_ADC->ro_cal0 & MXC_F_ADC_RO_CAL0_RO_TRM) >> MXC_F_ADC_RO_CAL0_RO_TRM_POS;
/* Step 13: write final trim to RO flash trim shadow register */
MXC_PWRSEQ->reg6 = (MXC_PWRSEQ->reg6 & ~MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF) |
((trim << MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF_POS) & MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF);
/* Step 14: restore RTC status */
if (!running) {
MXC_PWRSEQ->reg0 &= ~MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN;
}
/* Step 15: disable frequency loop to control RO trim */
MXC_ADC->ro_cal0 &= ~MXC_F_ADC_RO_CAL0_RO_CAL_EN;
}
static void ICC_Enable(void)
{
/* Invalidate cache and wait until ready */
MXC_ICC->invdt_all = 1;
while (!(MXC_ICC->ctrl_stat & MXC_F_ICC_CTRL_STAT_READY));
/* Enable cache */
MXC_ICC->ctrl_stat |= MXC_F_ICC_CTRL_STAT_ENABLE;
/* Must invalidate a second time for proper use */
MXC_ICC->invdt_all = 1;
}
/* This function is called before C runtime initialization and can be
* implemented by the application for early initializations. If a value other
* than '0' is returned, the C runtime initialization will be skipped.
*
* You may over-ride this function in your program by defining a custom
* PreInit(), but care should be taken to reproduce the initialization steps
* or a non-functional system may result.
*/
__weak int PreInit(void)
{
/* Increase system clock to 96 MHz */
MXC_CLKMAN->clk_ctrl = MXC_V_CLKMAN_CLK_CTRL_SYSTEM_SOURCE_SELECT_96MHZ_RO;
/* Performance-measurement hook, may be defined as nothing */
LP0_POST_HOOK;
/* Enable cache here to reduce boot time */
ICC_Enable();
return 0;
}
/* This function is called just before control is transferred to main().
*/
void SystemInit(void)
{
/* Copy trim information from shadow registers into power manager registers */
/* NOTE: Checks have been added to prevent bad/missing trim values from being loaded */
if ((MXC_FLC->ctrl & MXC_F_FLC_CTRL_INFO_BLOCK_VALID) &&
(MXC_TRIM->for_pwr_reg5 != 0xffffffff) &&
(MXC_TRIM->for_pwr_reg6 != 0xffffffff)) {
MXC_PWRSEQ->reg5 = MXC_TRIM->for_pwr_reg5;
MXC_PWRSEQ->reg6 = MXC_TRIM->for_pwr_reg6;
} else {
/* No valid info block, use some reasonable defaults */
MXC_PWRSEQ->reg6 &= ~MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF;
MXC_PWRSEQ->reg6 |= (0x1e0 << MXC_F_PWRSEQ_REG6_PWR_TRIM_OSC_VREF_POS);
}
/* Improve flash access timing */
MXC_FLC->perform |= (MXC_F_FLC_PERFORM_EN_BACK2BACK_RDS |
MXC_F_FLC_PERFORM_EN_MERGE_GRAB_GNT |
MXC_F_FLC_PERFORM_AUTO_TACC |
MXC_F_FLC_PERFORM_AUTO_CLKDIV);
/* First, eliminate the unnecessary RTC handshake between clock domains. Must be set as a pair. */
MXC_RTCTMR->ctrl |= (MXC_F_RTC_CTRL_USE_ASYNC_FLAGS |
MXC_F_RTC_CTRL_AGGRESSIVE_RST);
/* Enable fast read of the RTC timer value, and fast write of all other RTC registers */
MXC_PWRSEQ->rtc_ctrl2 |= (MXC_F_PWRSEQ_RTC_CTRL2_TIMER_AUTO_UPDATE |
MXC_F_PWRSEQ_RTC_CTRL2_TIMER_ASYNC_WR);
MXC_PWRSEQ->rtc_ctrl2 &= ~MXC_F_PWRSEQ_RTC_CTRL2_TIMER_ASYNC_RD;
/* Clear the GPIO WUD event if not waking up from LP0 */
/* this is necessary because WUD flops come up in undetermined state out of POR or SRST*/
if ((MXC_PWRSEQ->reg0 & MXC_F_PWRSEQ_REG0_PWR_FIRST_BOOT) ||
!(MXC_PWRMAN->pwr_rst_ctrl & MXC_F_PWRMAN_PWR_RST_CTRL_POR)) {
/* Clear GPIO WUD event and configuration registers, globally */
MXC_PWRSEQ->reg1 |= (MXC_F_PWRSEQ_REG1_PWR_CLR_IO_EVENT_LATCH |
MXC_F_PWRSEQ_REG1_PWR_CLR_IO_CFG_LATCH);
MXC_PWRSEQ->reg1 &= ~(MXC_F_PWRSEQ_REG1_PWR_CLR_IO_EVENT_LATCH |
MXC_F_PWRSEQ_REG1_PWR_CLR_IO_CFG_LATCH);
} else {
/* Unfreeze the GPIO by clearing MBUS_GATE, when returning from LP0 */
MXC_PWRSEQ->reg1 &= ~MXC_F_PWRSEQ_REG1_PWR_MBUS_GATE;
/* LP0 wake-up: Turn off special switch to eliminate ~50nA of leakage on VDD12 */
MXC_PWRSEQ->reg1 &= ~MXC_F_PWRSEQ_REG1_PWR_SRAM_NWELL_SW;
}
/* Turn on retention regulator */
MXC_PWRSEQ->reg0 |= (MXC_F_PWRSEQ_REG0_PWR_RETREGEN_RUN |
MXC_F_PWRSEQ_REG0_PWR_RETREGEN_SLP);
/* Turn on Auto GPIO Freeze/UnFreeze in sleep modes */
MXC_PWRSEQ->reg1 |= MXC_F_PWRSEQ_REG1_PWR_AUTO_MBUS_GATE;
/* Adjust settings in the retention controller for fastest wake-up time */
MXC_PWRSEQ->retn_ctrl0 |= (MXC_F_PWRSEQ_RETN_CTRL0_RC_REL_CCG_EARLY |
MXC_F_PWRSEQ_RETN_CTRL0_RC_POLL_FLASH);
MXC_PWRSEQ->retn_ctrl0 &= ~MXC_F_PWRSEQ_RETN_CTRL0_RC_USE_FLC_TWK;
/* Set retention controller TWake cycle count to 1us to minimize the wake-up time */
/* NOTE: flash polling (...PWRSEQ_RETN_CTRL0_RC_POLL_FLASH) must be enabled before changing POR default! */
MXC_PWRSEQ->retn_ctrl1 = (MXC_PWRSEQ->retn_ctrl1 & ~MXC_F_PWRSEQ_RETN_CTRL1_RC_TWK) |
(1 << MXC_F_PWRSEQ_RETN_CTRL1_RC_TWK_POS);
/* Improve wake-up time by changing ROSEL to 140ns */
MXC_PWRSEQ->reg3 = (1 << MXC_F_PWRSEQ_REG3_PWR_ROSEL_POS) |
(1 << MXC_F_PWRSEQ_REG3_PWR_FAILSEL_POS) |
(MXC_PWRSEQ->reg3 & ~(MXC_F_PWRSEQ_REG3_PWR_ROSEL |
MXC_F_PWRSEQ_REG3_PWR_FLTRROSEL));
/* Enable RTOS Mode: Enable 32kHz clock synchronizer to SysTick external clock input */
MXC_CLKMAN->clk_ctrl |= MXC_F_CLKMAN_CLK_CTRL_RTOS_MODE;
/* Set this so all bits of PWR_MSK_FLAGS are active low to mask the corresponding flags */
MXC_PWRSEQ->pwr_misc |= MXC_F_PWRSEQ_PWR_MISC_INVERT_4_MASK_BITS;
#if (__FPU_PRESENT == 1)
/* Enable FPU on Cortex-M4, which occupies coprocessor slots 10 & 11 */
/* Grant full access, per "Table B3-24 CPACR bit assignments". */
/* DDI0403D "ARMv7-M Architecture Reference Manual" */
SCB->CPACR |= SCB_CPACR_CP10_Msk | SCB_CPACR_CP11_Msk;
__DSB();
__ISB();
#endif
/* Perform an initial trim of the internal ring oscillator */
CLKMAN_TrimRO();
}