mirror of https://github.com/ARMmbed/mbed-os.git
1060 lines
28 KiB
C++
1060 lines
28 KiB
C++
/*
|
|
* Copyright (c) 2019, Arm Limited and affiliates.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "gtest/gtest.h"
|
|
#include "equeue.h"
|
|
#include "mbed.h"
|
|
#include <unistd.h>
|
|
#include <pthread.h>
|
|
|
|
#define EVENTS_EVENT_SIZE (EQUEUE_EVENT_SIZE - 2*sizeof(void*) + sizeof(mbed::Callback<void()>))
|
|
#define TEST_EQUEUE_SIZE 2048
|
|
#define TEST_THREAD_STACK_SIZE 512
|
|
#define DISPATCH_INFINITE -1
|
|
#define ITERATION_TIMES 10
|
|
|
|
extern unsigned int equeue_global_time;
|
|
|
|
class TestEqueue : public testing::Test {
|
|
virtual void SetUp()
|
|
{
|
|
}
|
|
|
|
virtual void TearDown()
|
|
{
|
|
}
|
|
};
|
|
|
|
// Test functions
|
|
static void pass_func(void *eh)
|
|
{
|
|
}
|
|
|
|
static void simple_func(void *p)
|
|
{
|
|
uint8_t *d = reinterpret_cast<uint8_t *>(p);
|
|
if (*d < 255) {
|
|
(*d)++;
|
|
}
|
|
}
|
|
|
|
static void sloth_func(void *p)
|
|
{
|
|
// adding to equeue_global_time becouse this simulates that this function takes some time
|
|
equeue_global_time += 10;
|
|
(*(reinterpret_cast<uint8_t *>(p)))++;
|
|
}
|
|
|
|
struct indirect {
|
|
uint8_t *touched;
|
|
uint8_t buffer[7];
|
|
};
|
|
|
|
static void indirect_func(void *p)
|
|
{
|
|
struct indirect *i = reinterpret_cast<struct indirect *>(p);
|
|
(*i->touched)++;
|
|
}
|
|
|
|
struct timing {
|
|
unsigned tick;
|
|
unsigned delay;
|
|
};
|
|
|
|
static void timing_func(void *p)
|
|
{
|
|
struct timing *timing = reinterpret_cast<struct timing *>(p);
|
|
unsigned tick = equeue_tick();
|
|
|
|
unsigned t1 = timing->delay;
|
|
unsigned t2 = tick - timing->tick;
|
|
EXPECT_TRUE(t2 - 10 < t1 < t2 + 10);
|
|
|
|
timing->tick = tick;
|
|
}
|
|
|
|
struct fragment {
|
|
equeue_t *q;
|
|
size_t size;
|
|
struct timing timing;
|
|
};
|
|
|
|
static void fragment_func(void *p)
|
|
{
|
|
struct fragment *fragment = reinterpret_cast<struct fragment *>(p);
|
|
timing_func(&fragment->timing);
|
|
|
|
struct fragment *nfragment = reinterpret_cast<struct fragment *>(equeue_alloc(fragment->q, fragment->size));
|
|
ASSERT_TRUE(nfragment != NULL);
|
|
|
|
*nfragment = *fragment;
|
|
equeue_event_delay(nfragment, fragment->timing.delay);
|
|
|
|
int id = equeue_post(nfragment->q, fragment_func, nfragment);
|
|
ASSERT_NE(0, id);
|
|
}
|
|
|
|
struct cancel {
|
|
equeue_t *q;
|
|
int id;
|
|
};
|
|
|
|
static void cancel_func(void *p)
|
|
{
|
|
struct cancel *ccel = reinterpret_cast<struct cancel *>(p);
|
|
equeue_cancel(ccel->q, ccel->id);
|
|
}
|
|
|
|
struct nest {
|
|
equeue_t *q;
|
|
void (*cb)(void *);
|
|
void *data;
|
|
};
|
|
|
|
static void nest_func(void *p)
|
|
{
|
|
struct nest *nst = reinterpret_cast<struct nest *>(p);
|
|
equeue_call(nst->q, nst->cb, nst->data);
|
|
// adding to equeue_global_time becouse this simulates that this function takes some time
|
|
equeue_global_time += 10;
|
|
}
|
|
|
|
static void *multithread_thread(void *p)
|
|
{
|
|
equeue_t *q = reinterpret_cast<equeue_t *>(p);
|
|
equeue_dispatch(q, DISPATCH_INFINITE);
|
|
return 0;
|
|
}
|
|
|
|
static void multithread_func(void *p)
|
|
{
|
|
if ((*(reinterpret_cast<uint8_t *>(p))) < 200) {
|
|
(*(reinterpret_cast<uint8_t *>(p)))++;
|
|
}
|
|
}
|
|
|
|
static void background_func(void *p, int ms)
|
|
{
|
|
*(reinterpret_cast<int *>(p)) = ms;
|
|
}
|
|
|
|
struct ethread {
|
|
pthread_t thread;
|
|
equeue_t *q;
|
|
int ms;
|
|
};
|
|
|
|
static void *ethread_dispatch(void *p)
|
|
{
|
|
struct ethread *t = reinterpret_cast<struct ethread *>(p);
|
|
equeue_dispatch(t->q, t->ms);
|
|
return 0;
|
|
}
|
|
|
|
struct count_and_queue {
|
|
int p;
|
|
equeue_t *q;
|
|
};
|
|
|
|
static void simple_breaker(void *p)
|
|
{
|
|
struct count_and_queue *caq = reinterpret_cast<struct count_and_queue *>(p);
|
|
equeue_break(caq->q);
|
|
// adding to equeue_global_time becouse this simulates that this function takes some time
|
|
equeue_global_time += 10;
|
|
caq->p++;
|
|
}
|
|
|
|
// Simple call tests
|
|
|
|
/** Test that equeue executes function passed by equeue_call.
|
|
*
|
|
* Given queue is initialized.
|
|
* When the event is scheduled and after that equeue_dispatch is called.
|
|
* Then function passed by equeue_call is executed properly.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_simple_call)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
equeue_call(&q, simple_func, &touched);
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(1, touched);
|
|
|
|
touched = 0;
|
|
equeue_dispatch(&q, 10);
|
|
EXPECT_EQ(0, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue executes function passed by equeue_call_in.
|
|
*
|
|
* Given queue is initialized.
|
|
* When the event is scheduled and after that equeue_dispatch is called.
|
|
* Then function passed by equeue_call_in is executed properly.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_simple_call_in)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
int id = equeue_call_in(&q, 10, simple_func, &touched);
|
|
ASSERT_NE(0, id);
|
|
|
|
equeue_dispatch(&q, 15);
|
|
EXPECT_EQ(1, touched);
|
|
|
|
touched = 0;
|
|
equeue_dispatch(&q, 10);
|
|
EXPECT_EQ(0, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue executes function passed by equeue_call_every.
|
|
*
|
|
* Given queue is initialized.
|
|
* When the event is scheduled and after that equeue_dispatch is called.
|
|
* Then function passed by equeue_call_every is executed properly.
|
|
*/
|
|
|
|
TEST_F(TestEqueue, test_equeue_simple_call_every)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
int id = equeue_call_every(&q, 10, simple_func, &touched);
|
|
ASSERT_NE(0, id);
|
|
|
|
equeue_dispatch(&q, 15);
|
|
EXPECT_EQ(1, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue executes function passed by equeue_post.
|
|
*
|
|
* Given queue is initialized.
|
|
* When the event is posted and after that equeue_dispatch is called.
|
|
* Then function passed by equeue_post is executed properly.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_simple_post)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
struct indirect *i = reinterpret_cast<struct indirect *>(equeue_alloc(&q, sizeof(struct indirect)));
|
|
ASSERT_TRUE(i != NULL);
|
|
|
|
i->touched = &touched;
|
|
int id = equeue_post(&q, indirect_func, i);
|
|
ASSERT_NE(0, id);
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(1, *i->touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
// Misc tests
|
|
|
|
/** Test that equeue executes events attached to its events destructors by equeue_event_dtor.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue events are being destroyed by equeue_dispatch, equeue_cancel, or equeue_destroy.
|
|
* Then functions attached to equeue events destructors are executed properly.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_destructor)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
struct indirect *e;
|
|
int ids[3];
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
e = reinterpret_cast<struct indirect *>(equeue_alloc(&q, sizeof(struct indirect)));
|
|
ASSERT_TRUE(e != NULL);
|
|
|
|
e->touched = &touched;
|
|
equeue_event_dtor(e, indirect_func);
|
|
int id = equeue_post(&q, pass_func, e);
|
|
ASSERT_NE(0, id);
|
|
}
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(3, touched);
|
|
|
|
touched = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
e = reinterpret_cast<struct indirect *>(equeue_alloc(&q, sizeof(struct indirect)));
|
|
ASSERT_TRUE(e != NULL);
|
|
|
|
e->touched = &touched;
|
|
equeue_event_dtor(e, indirect_func);
|
|
ids[i] = equeue_post(&q, pass_func, e);
|
|
ASSERT_NE(0, ids[i]);
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
equeue_cancel(&q, ids[i]);
|
|
}
|
|
EXPECT_EQ(3, touched);
|
|
|
|
equeue_dispatch(&q, 0);
|
|
|
|
touched = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
e = reinterpret_cast<struct indirect *>(equeue_alloc(&q, sizeof(struct indirect)));
|
|
ASSERT_TRUE(e);
|
|
|
|
e->touched = &touched;
|
|
equeue_event_dtor(e, indirect_func);
|
|
int id = equeue_post(&q, pass_func, e);
|
|
ASSERT_NE(0, id);
|
|
}
|
|
|
|
equeue_destroy(&q);
|
|
EXPECT_EQ(3, touched);
|
|
}
|
|
|
|
/** Test that equeue_alloc returns 0 when equeue can not be allocated.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue_alloc is called and equeue can not be allocated
|
|
* Then function equeue_alloc returns NULL.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_allocation_failure)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
void *p = equeue_alloc(&q, 2 * TEST_EQUEUE_SIZE);
|
|
EXPECT_TRUE(p == NULL);
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
p = equeue_alloc(&q, 0);
|
|
}
|
|
EXPECT_TRUE(p == NULL);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue does not execute evenets that has been canceled.
|
|
*
|
|
* Given queue is initialized.
|
|
* When events are canceled by equeue_cancel.
|
|
* Then they are not executed by calling equeue_dispatch.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_cancel)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, (2 * ITERATION_TIMES * EVENTS_EVENT_SIZE));
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
int ids[2 * ITERATION_TIMES];
|
|
|
|
for (int i = 0; i < 2 * ITERATION_TIMES; i++) {
|
|
ids[i] = equeue_call(&q, simple_func, &touched);
|
|
ASSERT_NE(0, ids[i]);
|
|
}
|
|
|
|
for (int i = 2 * ITERATION_TIMES - 1; i >= 0; i--) {
|
|
equeue_cancel(&q, ids[i]);
|
|
}
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(0, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that events can be cancelled by function executed by equeue_dispatch.
|
|
*
|
|
* Given queue is initialized.
|
|
* When event is cancelled by another event while dispatching.
|
|
* Then event that was cancelled is not being executed.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_cancel_inflight)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
|
|
int id = equeue_call(&q, simple_func, &touched);
|
|
equeue_cancel(&q, id);
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(0, touched);
|
|
|
|
id = equeue_call(&q, simple_func, &touched);
|
|
equeue_cancel(&q, id);
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(0, touched);
|
|
|
|
struct cancel *ccel = reinterpret_cast<struct cancel *>(equeue_alloc(&q, sizeof(struct cancel)));
|
|
ASSERT_TRUE(ccel != NULL);
|
|
ccel->q = &q;
|
|
ccel->id = 0;
|
|
|
|
id = equeue_post(&q, cancel_func, ccel);
|
|
ASSERT_NE(0, id);
|
|
|
|
ccel->id = equeue_call(&q, simple_func, &touched);
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(0, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that unnecessary canceling events would not affect executing other events.
|
|
*
|
|
* Given queue is initialized.
|
|
* When event is unnecessary canceled by equeue_cancel.
|
|
* Then other events are properly executed after calling equeue_dispatch.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_cancel_unnecessarily)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
int id = equeue_call(&q, pass_func, 0);
|
|
for (int i = 0; i < 5; i++) {
|
|
equeue_cancel(&q, id);
|
|
}
|
|
|
|
id = equeue_call(&q, pass_func, 0);
|
|
equeue_dispatch(&q, 0);
|
|
for (int i = 0; i < 5; i++) {
|
|
equeue_cancel(&q, id);
|
|
}
|
|
|
|
uint8_t touched = 0;
|
|
equeue_call(&q, simple_func, &touched);
|
|
for (int i = 0; i < 5; i++) {
|
|
equeue_cancel(&q, id);
|
|
}
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(1, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that dispatching events that have 0 ms period time would not end up in infinite loop.
|
|
*
|
|
* Given queue is initialized.
|
|
* When events have 0 ms period time.
|
|
* Then dispatching would not end up in infinite loop.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_loop_protect)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched1 = 0;
|
|
equeue_call_every(&q, 0, simple_func, &touched1);
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(1, touched1);
|
|
|
|
touched1 = 0;
|
|
uint8_t touched2 = 0;
|
|
equeue_call_every(&q, 1, simple_func, &touched2);
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(1, touched1);
|
|
EXPECT_EQ(0, touched2);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue_break breaks event queue out of dispatching.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue_break is called.
|
|
* Then event queue will stop dispatching after finisching current dispatching cycle.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_break)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched1 = 0;
|
|
equeue_call_every(&q, 0, simple_func, &touched1);
|
|
|
|
uint8_t touched2 = 0;
|
|
equeue_call_every(&q, 5, simple_func, &touched2);
|
|
|
|
equeue_break(&q);
|
|
equeue_dispatch(&q, DISPATCH_INFINITE);
|
|
EXPECT_EQ(1, touched1);
|
|
EXPECT_EQ(0, touched2);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue_break function breaks equeue dispatching only once.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue_break is called several times.
|
|
* Then equeue is stopped only once.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_break_no_windup)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
equeue_call_every(&q, 0, simple_func, &touched);
|
|
|
|
equeue_break(&q);
|
|
equeue_break(&q);
|
|
equeue_dispatch(&q, DISPATCH_INFINITE);
|
|
EXPECT_EQ(1, touched);
|
|
|
|
touched = 0;
|
|
equeue_dispatch(&q, 55);
|
|
EXPECT_TRUE(touched > 1);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that function passed by equeue_call_every is being executed periodically.
|
|
*
|
|
* Given queue is initialized.
|
|
* When function is passed by equeue_call_every with specified period.
|
|
* Then event is executed (dispatch time/period) times.
|
|
*/
|
|
|
|
TEST_F(TestEqueue, test_equeue_period)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
equeue_call_every(&q, 10, simple_func, &touched);
|
|
|
|
equeue_dispatch(&q, 55);
|
|
EXPECT_EQ(5, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that function added to the equeue by other function which already is in equeue executes in the next dispatch, or after the end of execution of the "mother" event.
|
|
*
|
|
* Given queue is initialized.
|
|
* When nested function is added to enqueue.
|
|
* Then it is executed in the next dispatch, or after execution of "mother" function.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_nested)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
struct nest *nst = reinterpret_cast<struct nest *>(equeue_alloc(&q, sizeof(struct nest)));
|
|
ASSERT_TRUE(nst != NULL);
|
|
nst->q = &q;
|
|
nst->cb = simple_func;
|
|
nst->data = &touched;
|
|
|
|
int id = equeue_post(&q, nest_func, nst);
|
|
ASSERT_NE(0, id);
|
|
|
|
equeue_dispatch(&q, 5);
|
|
EXPECT_EQ(0, touched);
|
|
|
|
equeue_dispatch(&q, 1);
|
|
EXPECT_EQ(1, touched);
|
|
|
|
touched = 0;
|
|
nst = reinterpret_cast<struct nest *>(equeue_alloc(&q, sizeof(struct nest)));
|
|
ASSERT_TRUE(nst != NULL);
|
|
nst->q = &q;
|
|
nst->cb = simple_func;
|
|
nst->data = &touched;
|
|
|
|
id = equeue_post(&q, nest_func, nst);
|
|
ASSERT_NE(0, id);
|
|
|
|
equeue_dispatch(&q, 20);
|
|
EXPECT_EQ(1, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that functions scheduled after slow function would execute according to the schedule if it is possible, if not they would execute right after sloth function.
|
|
*
|
|
* Given queue is initialized.
|
|
* When sloth function is being called before other functions.
|
|
* Then if it is possible all functions start according to predefined schedule correctly.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_sloth)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched1 = 0;
|
|
uint8_t touched2 = 0;
|
|
uint8_t touched3 = 0;
|
|
int id = equeue_call(&q, sloth_func, &touched1);
|
|
ASSERT_NE(0, id);
|
|
|
|
id = equeue_call_in(&q, 5, simple_func, &touched2);
|
|
ASSERT_NE(0, id);
|
|
|
|
id = equeue_call_in(&q, 15, simple_func, &touched3);
|
|
ASSERT_NE(0, id);
|
|
|
|
equeue_dispatch(&q, 20);
|
|
EXPECT_EQ(1, touched1);
|
|
EXPECT_EQ(1, touched2);
|
|
EXPECT_EQ(1, touched3);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue can be broken of dispatching from a different thread.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue starts dispatching in one thread.
|
|
* Then it can be stopped from another thread via equeue_break.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_multithread)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
equeue_call_every(&q, 1, multithread_func, &touched);
|
|
|
|
pthread_t thread;
|
|
err = pthread_create(&thread, 0, multithread_thread, &q);
|
|
ASSERT_EQ(0, err);
|
|
|
|
usleep(10000);
|
|
equeue_break(&q);
|
|
err = pthread_join(thread, 0);
|
|
ASSERT_EQ(0, err);
|
|
|
|
EXPECT_TRUE(touched > 1);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that variable referred via equeue_background shows value in ms to the next event.
|
|
*
|
|
* Given queue is initialized.
|
|
* When variable is referred via equeue_background.
|
|
* Then it depicts the time in ms to the next event.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_background)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
int id = equeue_call_in(&q, 20, pass_func, 0);
|
|
ASSERT_NE(0, id);
|
|
|
|
int ms;
|
|
equeue_background(&q, background_func, &ms);
|
|
EXPECT_EQ(20, ms);
|
|
|
|
id = equeue_call_in(&q, 10, pass_func, 0);
|
|
ASSERT_NE(0, id);
|
|
EXPECT_EQ(10, ms);
|
|
|
|
id = equeue_call(&q, pass_func, 0);
|
|
ASSERT_NE(0, id);
|
|
EXPECT_EQ(0, ms);
|
|
|
|
equeue_dispatch(&q, 0);
|
|
EXPECT_EQ(10, ms);
|
|
|
|
equeue_destroy(&q);
|
|
EXPECT_EQ(-1, ms);
|
|
}
|
|
|
|
/** Test that when chaining two equeues, events from both equeues execute by calling dispatch only on target.
|
|
*
|
|
* Given queue is initialized.
|
|
* When target chained equeue is dispatched.
|
|
* Then events from both chained equeues are executed.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_chain)
|
|
{
|
|
equeue_t q1;
|
|
int err = equeue_create(&q1, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
equeue_t q2;
|
|
err = equeue_create(&q2, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
equeue_chain(&q2, &q1);
|
|
|
|
uint8_t touched1 = 0;
|
|
uint8_t touched2 = 0;
|
|
|
|
int id1 = equeue_call_in(&q1, 20, simple_func, &touched1);
|
|
ASSERT_NE(0, id1);
|
|
int id2 = equeue_call_in(&q2, 20, simple_func, &touched2);
|
|
ASSERT_NE(0, id2);
|
|
|
|
id1 = equeue_call(&q1, simple_func, &touched1);
|
|
ASSERT_NE(0, id1);
|
|
id2 = equeue_call(&q2, simple_func, &touched2);
|
|
ASSERT_NE(0, id2);
|
|
|
|
id1 = equeue_call_in(&q1, 5, simple_func, &touched1);
|
|
ASSERT_NE(0, id1);
|
|
id2 = equeue_call_in(&q2, 5, simple_func, &touched2);
|
|
ASSERT_NE(0, id2);
|
|
|
|
equeue_cancel(&q1, id1);
|
|
equeue_cancel(&q2, id2);
|
|
|
|
id1 = equeue_call_in(&q1, 10, simple_func, &touched1);
|
|
ASSERT_NE(0, id1);
|
|
id2 = equeue_call_in(&q2, 10, simple_func, &touched2);
|
|
ASSERT_NE(0, id2);
|
|
|
|
equeue_dispatch(&q1, 30);
|
|
|
|
EXPECT_EQ(3, touched1);
|
|
EXPECT_EQ(3, touched2);
|
|
|
|
equeue_destroy(&q2);
|
|
equeue_destroy(&q1);
|
|
}
|
|
|
|
/** Test that unchaining equeues makes them work on their own.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue is unchained.
|
|
* Then it can be only dispatched by calling with reference to it.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_unchain)
|
|
{
|
|
equeue_t q1;
|
|
int err = equeue_create(&q1, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
equeue_t q2;
|
|
err = equeue_create(&q2, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
equeue_chain(&q2, &q1);
|
|
|
|
uint8_t touched1 = 0;
|
|
uint8_t touched2 = 0;
|
|
int id1 = equeue_call(&q1, simple_func, &touched1);
|
|
ASSERT_NE(0, id1);
|
|
int id2 = equeue_call(&q2, simple_func, &touched2);
|
|
ASSERT_NE(0, id2);
|
|
|
|
equeue_dispatch(&q1, 0);
|
|
EXPECT_EQ(1, touched1);
|
|
EXPECT_EQ(1, touched2);
|
|
|
|
equeue_chain(&q2, 0);
|
|
|
|
touched1 = 0;
|
|
touched2 = 0;
|
|
|
|
id1 = equeue_call(&q1, simple_func, &touched1);
|
|
ASSERT_NE(0, id1);
|
|
id2 = equeue_call(&q2, simple_func, &touched2);
|
|
ASSERT_NE(0, id2);
|
|
|
|
equeue_dispatch(&q1, 0);
|
|
EXPECT_EQ(1, touched1);
|
|
EXPECT_EQ(0, touched2);
|
|
|
|
equeue_dispatch(&q2, 0);
|
|
EXPECT_EQ(1, touched1);
|
|
EXPECT_EQ(1, touched2);
|
|
|
|
equeue_chain(&q1, &q2);
|
|
|
|
touched1 = 0;
|
|
touched2 = 0;
|
|
|
|
id1 = equeue_call(&q1, simple_func, &touched1);
|
|
ASSERT_NE(0, id1);
|
|
id2 = equeue_call(&q2, simple_func, &touched2);
|
|
ASSERT_NE(0, id2);
|
|
|
|
equeue_dispatch(&q2, 0);
|
|
EXPECT_EQ(1, touched1);
|
|
EXPECT_EQ(1, touched2);
|
|
|
|
equeue_destroy(&q1);
|
|
equeue_destroy(&q2);
|
|
}
|
|
|
|
// Barrage tests
|
|
|
|
/** Test that equeue keeps good time at starting events.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue is being dispatched.
|
|
* Then events happen according to the schedule with an error within a specified range.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_simple_barrage)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, 2 * ITERATION_TIMES * (EQUEUE_EVENT_SIZE + sizeof(struct timing)));
|
|
ASSERT_EQ(0, err);
|
|
|
|
for (int i = 0; i < 2 * ITERATION_TIMES; i++) {
|
|
struct timing *timing = reinterpret_cast<struct timing *>(equeue_alloc(&q, sizeof(struct timing)));
|
|
ASSERT_TRUE(timing != NULL);
|
|
|
|
timing->tick = equeue_tick();
|
|
timing->delay = (i + 1) * 100;
|
|
equeue_event_delay(timing, timing->delay);
|
|
equeue_event_period(timing, timing->delay);
|
|
|
|
int id = equeue_post(&q, timing_func, timing);
|
|
ASSERT_NE(0, id);
|
|
}
|
|
|
|
equeue_dispatch(&q, 2 * ITERATION_TIMES * 100);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue keeps good time at starting events when events are added via functions already placed in equeue.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue is being dispatched and new events are added via already placed in equeue.
|
|
* Then events happen according to the schedule with an error within a specified range.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_fragmenting_barrage)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q,
|
|
2 * ITERATION_TIMES * (EQUEUE_EVENT_SIZE + sizeof(struct fragment) + ITERATION_TIMES * sizeof(int)));
|
|
ASSERT_EQ(0, err);
|
|
|
|
for (int i = 0; i < ITERATION_TIMES; i++) {
|
|
size_t size = sizeof(struct fragment) + i * sizeof(int);
|
|
struct fragment *fragment = reinterpret_cast<struct fragment *>(equeue_alloc(&q, size));
|
|
ASSERT_TRUE(fragment != NULL);
|
|
|
|
fragment->q = &q;
|
|
fragment->size = size;
|
|
fragment->timing.tick = equeue_tick();
|
|
fragment->timing.delay = (i + 1) * 100;
|
|
equeue_event_delay(fragment, fragment->timing.delay);
|
|
|
|
int id = equeue_post(&q, fragment_func, fragment);
|
|
ASSERT_NE(0, id);
|
|
}
|
|
|
|
equeue_dispatch(&q, ITERATION_TIMES * 100);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue keeps good time at starting events even if it is working on different thread.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue is being dispatched on different thread.
|
|
* Then events happen according to the schedule with an error within a specified range.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_multithreaded_barrage)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, ITERATION_TIMES * (EQUEUE_EVENT_SIZE + sizeof(struct timing)));
|
|
ASSERT_EQ(0, err);
|
|
|
|
struct ethread t;
|
|
t.q = &q;
|
|
t.ms = ITERATION_TIMES * 100;
|
|
|
|
err = pthread_create(&t.thread, 0, ethread_dispatch, &t);
|
|
ASSERT_EQ(0, err);
|
|
|
|
for (int i = 0; i < ITERATION_TIMES; i++) {
|
|
struct timing *timing = reinterpret_cast<struct timing *>(equeue_alloc(&q, sizeof(struct timing)));
|
|
ASSERT_TRUE(timing != NULL);
|
|
|
|
timing->tick = equeue_tick();
|
|
timing->delay = (i + 1) * 100;
|
|
equeue_event_delay(timing, timing->delay);
|
|
equeue_event_period(timing, timing->delay);
|
|
|
|
int id = equeue_post(&q, timing_func, timing);
|
|
ASSERT_NE(0, id);
|
|
}
|
|
|
|
err = pthread_join(t.thread, 0);
|
|
ASSERT_EQ(0, err);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that break request flag is cleared when equeue stops dispatching timeouts.
|
|
*
|
|
* Given queue is initialized.
|
|
* When equeue break request flag is called but equeue stops dispatching because of timeout.
|
|
* Then next equeue dispatch is not stopped.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_break_request_cleared_on_timeout)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
struct count_and_queue pq;
|
|
pq.p = 0;
|
|
pq.q = &q;
|
|
|
|
int id = equeue_call_in(&q, 1, simple_breaker, &pq);
|
|
|
|
equeue_dispatch(&q, 10);
|
|
|
|
EXPECT_EQ(1, pq.p);
|
|
|
|
equeue_cancel(&q, id);
|
|
|
|
uint8_t touched = 0;
|
|
equeue_call_every(&q, 10, simple_func, &touched);
|
|
|
|
equeue_dispatch(&q, 55);
|
|
EXPECT_EQ(5, touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that siblings events don't have next pointers.
|
|
*
|
|
* Given queue is initialized.
|
|
* When events are scheduled on the same time.
|
|
* Then they are connected via sibling pointers and siblings have their next pointer pointing to NULL.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_sibling)
|
|
{
|
|
equeue_t q;
|
|
int err = equeue_create(&q, TEST_EQUEUE_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
int id0 = equeue_call_in(&q, 1, pass_func, 0);
|
|
int id1 = equeue_call_in(&q, 1, pass_func, 0);
|
|
int id2 = equeue_call_in(&q, 1, pass_func, 0);
|
|
|
|
struct equeue_event *e = q.queue;
|
|
|
|
for (; e; e = e->next) {
|
|
for (struct equeue_event *s = e->sibling; s; s = s->sibling) {
|
|
EXPECT_TRUE(s->next == NULL);
|
|
}
|
|
}
|
|
equeue_cancel(&q, id0);
|
|
equeue_cancel(&q, id1);
|
|
equeue_cancel(&q, id2);
|
|
equeue_destroy(&q);
|
|
}
|
|
|
|
/** Test that equeue executes user allocated events passed by equeue_post.
|
|
*
|
|
* Given queue is initialized and its size is set to store one event at max in its internal memory.
|
|
* When post events allocated in queues internal memory (what is done by calling equeue_call).
|
|
* Then only one event can be posted due to queue memory size.
|
|
* When post user allocated events.
|
|
* Then number of posted events is not limited by queue memory size.
|
|
* When both queue allocaded and user allocated events are posted and equeue_dispatch is called.
|
|
* Then both types of events are executed properly.
|
|
*/
|
|
TEST_F(TestEqueue, test_equeue_user_allocated_event_post)
|
|
{
|
|
struct user_allocated_event {
|
|
struct equeue_event e;
|
|
uint8_t touched;
|
|
};
|
|
equeue_t q;
|
|
int err = equeue_create(&q, EQUEUE_EVENT_SIZE);
|
|
ASSERT_EQ(0, err);
|
|
|
|
uint8_t touched = 0;
|
|
user_allocated_event e1 = { { 0, 0, 0, NULL, NULL, NULL, 0, -1, NULL, NULL }, 0 };
|
|
user_allocated_event e2 = { { 0, 0, 0, NULL, NULL, NULL, 1, -1, NULL, NULL }, 0 };
|
|
user_allocated_event e3 = { { 0, 0, 0, NULL, NULL, NULL, 1, -1, NULL, NULL }, 0 };
|
|
user_allocated_event e4 = { { 0, 0, 0, NULL, NULL, NULL, 1, -1, NULL, NULL }, 0 };
|
|
user_allocated_event e5 = { { 0, 0, 0, NULL, NULL, NULL, 0, -1, NULL, NULL }, 0 };
|
|
|
|
EXPECT_NE(0, equeue_call(&q, simple_func, &touched));
|
|
EXPECT_EQ(0, equeue_call(&q, simple_func, &touched));
|
|
EXPECT_EQ(0, equeue_call(&q, simple_func, &touched));
|
|
|
|
equeue_post_user_allocated(&q, simple_func, &e1.e);
|
|
equeue_post_user_allocated(&q, simple_func, &e2.e);
|
|
equeue_post_user_allocated(&q, simple_func, &e3.e);
|
|
equeue_post_user_allocated(&q, simple_func, &e4.e);
|
|
equeue_post_user_allocated(&q, simple_func, &e5.e);
|
|
equeue_cancel_user_allocated(&q, &e3.e);
|
|
|
|
equeue_dispatch(&q, 1);
|
|
|
|
EXPECT_EQ(1, touched);
|
|
EXPECT_EQ(1, e1.touched);
|
|
EXPECT_EQ(1, e2.touched);
|
|
EXPECT_EQ(0, e3.touched);
|
|
EXPECT_EQ(1, e4.touched);
|
|
EXPECT_EQ(1, e5.touched);
|
|
|
|
equeue_dispatch(&q, 10);
|
|
|
|
EXPECT_EQ(1, touched);
|
|
EXPECT_EQ(1, e1.touched);
|
|
EXPECT_EQ(1, e2.touched);
|
|
EXPECT_EQ(0, e3.touched);
|
|
EXPECT_EQ(1, e4.touched);
|
|
EXPECT_EQ(1, e5.touched);
|
|
|
|
equeue_destroy(&q);
|
|
}
|