mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM4KN/spi_api.c

357 lines
10 KiB
C

/* mbed Microcontroller Library
* Copyright(C) Toshiba Electronic Device Solutions Corporation 2021
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "spi_api.h"
#include "mbed_error.h"
#include "txzp_tspi.h"
#include "pinmap.h"
#define TIMEOUT (5000)
static const PinMap PinMap_SPI_MOSI[] = {
{PA3, SPI_0, PIN_DATA(1, 1)},
{PG5, SPI_1, PIN_DATA(1, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{PA2, SPI_0, PIN_DATA(1, 0)},
{PG4, SPI_1, PIN_DATA(1, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SCLK[] = {
{PA4, SPI_0, PIN_DATA(1, 1)},
{PG6, SPI_1, PIN_DATA(1, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SLAVE_SCLK[] = {
{PA4, SPI_0, PIN_DATA(1, 0)},
{PG6, SPI_1, PIN_DATA(1, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{PA1, SPI_0, PIN_DATA(1, 1)},
{PG1, SPI_1, PIN_DATA(1, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SLAVE_SSEL[] = {
{PA0, SPI_0, PIN_DATA(1, 0)},
{PG3, SPI_1, PIN_DATA(1, 0)},
{NC, NC, 0}
};
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
// Check pin parameters
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
obj->module = (SPIName)pinmap_merge(spi_mosi, spi_miso);
MBED_ASSERT((int)obj->module != NC);
obj->clk_pin = sclk;
obj->ssel_pin = ssel;
// Identify SPI module to use
switch ((int)obj->module) {
case SPI_0:
obj->p_obj.p_instance = TSB_TSPI0;
// Enable clock for particular Port and SPI
TSB_CG_FSYSMENA_IPMENA00 = TXZ_ENABLE;
TSB_CG_FSYSMENA_IPMENA19 = TXZ_ENABLE;
break;
case SPI_1:
obj->p_obj.p_instance = TSB_TSPI1;
// Enable clock for particular Port and SPI
TSB_CG_FSYSMENA_IPMENA06 = TXZ_ENABLE;
TSB_CG_FSYSMENA_IPMENA20 = TXZ_ENABLE;
break;
default:
obj->p_obj.p_instance = NULL;
obj->module = (SPIName)NC;
error("Cannot found SPI module corresponding with input pins.");
break;
}
// Pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
// Default configurations 8 bit, 1Mhz frequency
// Control 1 configurations
obj->p_obj.init.id = (uint32_t)obj->module;
obj->p_obj.init.cnt1.inf = TSPI_INF_DISABLE; // Infinite Transfer Control disabled
obj->p_obj.init.cnt1.trgen = TSPI_TRGEN_DISABLE; // Trigger disabled
obj->p_obj.init.cnt1.trxe = TSPI_DISABLE; // Enable Communication
obj->p_obj.init.cnt1.tspims = TSPI_SPI_MODE; // SPI mode
obj->p_obj.init.cnt1.mstr = TSPI_MASTER_OPERATION; // Master mode operation
obj->p_obj.init.cnt1.tmmd = TSPI_TWO_WAY; // Full-duplex mode (Transmit/receive)
obj->p_obj.init.cnt1.fc = TSPI_TRANS_RANGE_CONTINUE; // Transfer single frame at a time continously
// Control 2 configurations
obj->p_obj.init.cnt2.tidle = TSPI_TIDLE_HI;
obj->p_obj.init.cnt2.txdemp = TSPI_TXDEMP_HI; // When slave underruns TxD fixed to low
obj->p_obj.init.cnt2.rxdly = TSPI_RXDLY_FSYS_FSCK_16;
obj->p_obj.init.cnt2.til = TSPI_TX_FILL_LEVEL_0; // Transmit FIFO Level
obj->p_obj.init.cnt2.ril = TSPI_RX_FILL_LEVEL_1; // Receive FIFO Level
obj->p_obj.init.cnt2.inttxwe = TSPI_TX_INT_DISABLE;
obj->p_obj.init.cnt2.intrxwe = TSPI_RX_INT_DISABLE;
obj->p_obj.init.cnt2.inttxfe = TSPI_TX_FIFO_INT_DISABLE;
obj->p_obj.init.cnt2.intrxfe = TSPI_RX_FIFO_INT_DISABLE;
obj->p_obj.init.cnt2.interr = TSPI_ERR_INT_DISABLE;
obj->p_obj.init.cnt2.dmate = TSPI_TX_DMA_INT_DISABLE;
obj->p_obj.init.cnt2.dmare = TSPI_RX_DMA_INT_DISABLE;
// Control 3 configurations
obj->p_obj.init.cnt3.tfempclr = TSPI_TX_BUFF_CLR_DONE; // Transmit buffer clear
obj->p_obj.init.cnt3.rffllclr = TSPI_RX_BUFF_CLR_DONE; // Receive buffer clear
// Baudrate settings - 1 Mhz default
obj->p_obj.init.brd.brck = TSPI_BR_CLOCK_4;
obj->p_obj.init.brd.brs = TSPI_BR_DIVIDER_10;
// Format Control 0 settings
obj->p_obj.init.fmr0.dir = TSPI_DATA_DIRECTION_MSB; // MSB bit first
obj->p_obj.init.fmr0.fl = TSPI_DATA_LENGTH_8;
obj->p_obj.init.fmr0.fint = TSPI_INTERVAL_TIME_0;
// Special control on polarity of signal and generation timing
obj->p_obj.init.fmr0.cs3pol = TSPI_TSPIxCS3_NEGATIVE;
obj->p_obj.init.fmr0.cs2pol = TSPI_TSPIxCS2_NEGATIVE;
obj->p_obj.init.fmr0.cs1pol = TSPI_TSPIxCS1_NEGATIVE;
obj->p_obj.init.fmr0.cs0pol = TSPI_TSPIxCS0_NEGATIVE;
obj->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_1ST_EDGE;
obj->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_LOW;
obj->p_obj.init.fmr0.csint = TSPI_MIN_IDLE_TIME_1;
obj->p_obj.init.fmr0.cssckdl = TSPI_SERIAL_CK_DELAY_1;
obj->p_obj.init.fmr0.sckcsdl = TSPI_NEGATE_1;
// Format Control 1 settings tspi_fmtr1_t
obj->p_obj.init.fmr1.vpe = TSPI_PARITY_DISABLE;
obj->p_obj.init.fmr1.vpm = TSPI_PARITY_BIT_ODD;
obj->p_obj.init.sectcr0.sect = TSPI_SECTCR0_SECT_FRAME_MODE;
obj->bits = (uint8_t)TSPI_DATA_LENGTH_8;
// Initialize SPI
tspi_init(&obj->p_obj);
}
void spi_free(spi_t *obj)
{
tspi_deinit(&obj->p_obj);
obj->module = (SPIName)NC;
}
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
MBED_ASSERT((slave == 0U) || (slave == 1U)); // 0: master mode, 1: slave mode
MBED_ASSERT((bits >= 8) && (bits <= 32));
obj->bits = bits;
obj->p_obj.init.fmr0.fl = (bits << 24);
if (slave) {
pinmap_pinout(obj->clk_pin, PinMap_SPI_SLAVE_SCLK);
pinmap_pinout(obj->ssel_pin, PinMap_SPI_SLAVE_SSEL);
obj->p_obj.init.cnt1.mstr = TSPI_SLAVE_OPERATION; // Slave mode operation
} else {
pinmap_pinout(obj->clk_pin, PinMap_SPI_SCLK);
pinmap_pinout(obj->ssel_pin, PinMap_SPI_SSEL);
obj->p_obj.init.cnt1.mstr = TSPI_MASTER_OPERATION; // Master mode operation
}
if ((mode >> 1) & 0x1) {
obj->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_HI;
} else {
obj->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_LOW;
}
if (mode & 0x1) {
obj->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_2ND_EDGE;
} else {
obj->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_1ST_EDGE;
}
tspi_init(&obj->p_obj);
}
void spi_frequency(spi_t *obj, int hz)
{
SystemCoreClockUpdate();
uint8_t brs = 0;
uint8_t brck = 0;
uint16_t prsck = 1;
uint64_t fscl = 0;
uint64_t tmp_fscl = 0;
uint64_t fx = 0;
uint64_t tmpvar = SystemCoreClock / 2;
for (prsck = 1; prsck <= 512; prsck *= 2) {
fx = ((uint64_t)tmpvar / prsck);
for (brs = 1; brs <= 16; brs++) {
fscl = fx / brs;
if ((fscl <= (uint64_t)hz) && (fscl > tmp_fscl)) {
tmp_fscl = fscl;
obj->p_obj.init.brd.brck = (brck << 4);
if (brs == 16) {
obj->p_obj.init.brd.brs = 0;
} else {
obj->p_obj.init.brd.brs = brs;
}
}
}
brck ++;
}
tspi_init(&obj->p_obj);
}
int spi_master_write(spi_t *obj, int value)
{
uint8_t ret_value = 0;
tspi_transmit_t send_obj;
tspi_receive_t rec_obj;
// Transmit data
send_obj.tx8.p_data = (uint8_t *)&value;
send_obj.tx8.num = 1;
tspi_master_write(&obj->p_obj, &send_obj, TIMEOUT);
// Read received data
rec_obj.rx8.p_data = &ret_value;
rec_obj.rx8.num = 1;
tspi_master_read(&obj->p_obj, &rec_obj, TIMEOUT);
return ret_value;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill)
{
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj)
{
if ((obj->p_obj.p_instance->SR & 0x0F) != 0) {
return 1;
}
return 0;
}
int spi_slave_read(spi_t *obj)
{
uint8_t ret_value = 0;
ret_value = obj->p_obj.p_instance->DR & 0xFF;
obj->p_obj.p_instance->CR1 &= TSPI_TRXE_DISABLE_MASK;
return ret_value;
}
void spi_slave_write(spi_t *obj, int value)
{
if ((obj->p_obj.p_instance->CR1 & TSPI_TX_ONLY) != TSPI_TX_ONLY) { //Enable TX if not Enabled
obj->p_obj.p_instance->CR1 |= TSPI_TX_ONLY;
}
obj->p_obj.p_instance->DR = (uint8_t)(value * 0xFF);
obj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
}
int spi_busy(spi_t *obj)
{
int ret = 1;
uint32_t status = 0;
tspi_get_status(&obj->p_obj, &status);
if ((status & (TSPI_TX_FLAG_ACTIVE | TSPI_RX_FLAG_ACTIVE)) == 0) {
ret = 0;
}
return ret;
}
uint8_t spi_get_module(spi_t *obj)
{
return (uint8_t)(obj->module);
}
const PinMap *spi_master_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_master_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_master_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_master_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
const PinMap *spi_slave_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_slave_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_slave_clk_pinmap()
{
return PinMap_SPI_SLAVE_SCLK;
}
const PinMap *spi_slave_cs_pinmap()
{
return PinMap_SPI_SLAVE_SSEL;
}