mirror of https://github.com/ARMmbed/mbed-os.git
				
				
				
			
		
			
				
	
	
		
			421 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
			
		
		
	
	
			421 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
/* mbed Microcontroller Library
 | 
						|
 *******************************************************************************
 | 
						|
 * Copyright (c) 2015, STMicroelectronics
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions are met:
 | 
						|
 *
 | 
						|
 * 1. Redistributions of source code must retain the above copyright notice,
 | 
						|
 *    this list of conditions and the following disclaimer.
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 | 
						|
 *    this list of conditions and the following disclaimer in the documentation
 | 
						|
 *    and/or other materials provided with the distribution.
 | 
						|
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 | 
						|
 *    may be used to endorse or promote products derived from this software
 | 
						|
 *    without specific prior written permission.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | 
						|
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | 
						|
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | 
						|
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | 
						|
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 *******************************************************************************
 | 
						|
 */
 | 
						|
#include "pwmout_api.h"
 | 
						|
 | 
						|
#if DEVICE_PWMOUT
 | 
						|
 | 
						|
#include "cmsis.h"
 | 
						|
#include "pinmap.h"
 | 
						|
#include "mbed_error.h"
 | 
						|
#include "PeripheralPins.h"
 | 
						|
#include "pwmout_device.h"
 | 
						|
 | 
						|
static TIM_HandleTypeDef TimHandle;
 | 
						|
 | 
						|
/* Convert STM32 Cube HAL channel to LL channel */
 | 
						|
uint32_t TIM_ChannelConvert_HAL2LL(uint32_t channel, pwmout_t *obj)
 | 
						|
{
 | 
						|
#if !defined(PWMOUT_INVERTED_NOT_SUPPORTED)
 | 
						|
    if (obj->inverted) {
 | 
						|
        switch (channel) {
 | 
						|
            case TIM_CHANNEL_1  :
 | 
						|
                return LL_TIM_CHANNEL_CH1N;
 | 
						|
            case TIM_CHANNEL_2  :
 | 
						|
                return LL_TIM_CHANNEL_CH2N;
 | 
						|
            case TIM_CHANNEL_3  :
 | 
						|
                return LL_TIM_CHANNEL_CH3N;
 | 
						|
#if defined(LL_TIM_CHANNEL_CH4N)
 | 
						|
            case TIM_CHANNEL_4  :
 | 
						|
                return LL_TIM_CHANNEL_CH4N;
 | 
						|
#endif
 | 
						|
            default : /* Optional */
 | 
						|
                return 0;
 | 
						|
        }
 | 
						|
    } else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
        switch (channel) {
 | 
						|
            case TIM_CHANNEL_1  :
 | 
						|
                return LL_TIM_CHANNEL_CH1;
 | 
						|
            case TIM_CHANNEL_2  :
 | 
						|
                return LL_TIM_CHANNEL_CH2;
 | 
						|
            case TIM_CHANNEL_3  :
 | 
						|
                return LL_TIM_CHANNEL_CH3;
 | 
						|
            case TIM_CHANNEL_4  :
 | 
						|
                return LL_TIM_CHANNEL_CH4;
 | 
						|
            default : /* Optional */
 | 
						|
                return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if STATIC_PINMAP_READY
 | 
						|
#define PWM_INIT_DIRECT pwmout_init_direct
 | 
						|
void pwmout_init_direct(pwmout_t *obj, const PinMap *pinmap)
 | 
						|
#else
 | 
						|
#define PWM_INIT_DIRECT _pwmout_init_direct
 | 
						|
static void _pwmout_init_direct(pwmout_t *obj, const PinMap *pinmap)
 | 
						|
#endif
 | 
						|
{
 | 
						|
    // Get the peripheral name from the pin and assign it to the object
 | 
						|
    obj->pwm = (PWMName)pinmap->peripheral;
 | 
						|
    MBED_ASSERT(obj->pwm != (PWMName)NC);
 | 
						|
 | 
						|
    // Get the functions (timer channel, (non)inverted) from the pin and assign it to the object
 | 
						|
    uint32_t function = (uint32_t)pinmap->function;
 | 
						|
    MBED_ASSERT(function != (uint32_t)NC);
 | 
						|
    obj->channel = STM_PIN_CHANNEL(function);
 | 
						|
    obj->inverted = STM_PIN_INVERTED(function);
 | 
						|
 | 
						|
    // Enable TIM clock
 | 
						|
#if defined(TIM1_BASE)
 | 
						|
    if (obj->pwm == PWM_1) {
 | 
						|
        __HAL_RCC_TIM1_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM2_BASE)
 | 
						|
    if (obj->pwm == PWM_2) {
 | 
						|
        __HAL_RCC_TIM2_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM3_BASE)
 | 
						|
    if (obj->pwm == PWM_3) {
 | 
						|
        __HAL_RCC_TIM3_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM4_BASE)
 | 
						|
    if (obj->pwm == PWM_4) {
 | 
						|
        __HAL_RCC_TIM4_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM5_BASE)
 | 
						|
    if (obj->pwm == PWM_5) {
 | 
						|
        __HAL_RCC_TIM5_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM8_BASE)
 | 
						|
    if (obj->pwm == PWM_8) {
 | 
						|
        __HAL_RCC_TIM8_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM9_BASE)
 | 
						|
    if (obj->pwm == PWM_9) {
 | 
						|
        __HAL_RCC_TIM9_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM10_BASE)
 | 
						|
    if (obj->pwm == PWM_10) {
 | 
						|
        __HAL_RCC_TIM10_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM11_BASE)
 | 
						|
    if (obj->pwm == PWM_11) {
 | 
						|
        __HAL_RCC_TIM11_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM12_BASE)
 | 
						|
    if (obj->pwm == PWM_12) {
 | 
						|
        __HAL_RCC_TIM12_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM13_BASE)
 | 
						|
    if (obj->pwm == PWM_13) {
 | 
						|
        __HAL_RCC_TIM13_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM14_BASE)
 | 
						|
    if (obj->pwm == PWM_14) {
 | 
						|
        __HAL_RCC_TIM14_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM15_BASE)
 | 
						|
    if (obj->pwm == PWM_15) {
 | 
						|
        __HAL_RCC_TIM15_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM16_BASE)
 | 
						|
    if (obj->pwm == PWM_16) {
 | 
						|
        __HAL_RCC_TIM16_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM17_BASE)
 | 
						|
    if (obj->pwm == PWM_17) {
 | 
						|
        __HAL_RCC_TIM17_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM18_BASE)
 | 
						|
    if (obj->pwm == PWM_18) {
 | 
						|
        __HAL_RCC_TIM18_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM19_BASE)
 | 
						|
    if (obj->pwm == PWM_19) {
 | 
						|
        __HAL_RCC_TIM19_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM20_BASE)
 | 
						|
    if (obj->pwm == PWM_20) {
 | 
						|
        __HAL_RCC_TIM20_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM21_BASE)
 | 
						|
    if (obj->pwm == PWM_21) {
 | 
						|
        __HAL_RCC_TIM21_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(TIM22_BASE)
 | 
						|
    if (obj->pwm == PWM_22) {
 | 
						|
        __HAL_RCC_TIM22_CLK_ENABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    // Configure GPIO
 | 
						|
    pin_function(pinmap->pin, pinmap->function);
 | 
						|
 | 
						|
    obj->pin = pinmap->pin;
 | 
						|
    obj->period = 0;
 | 
						|
    obj->pulse = 0;
 | 
						|
    obj->prescaler = 1;
 | 
						|
 | 
						|
    pwmout_period_us(obj, 20000); // 20 ms per default
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_init(pwmout_t *obj, PinName pin)
 | 
						|
{
 | 
						|
    int peripheral = (int)pinmap_peripheral(pin, PinMap_PWM);
 | 
						|
    int function = (int)pinmap_find_function(pin, PinMap_PWM);
 | 
						|
 | 
						|
    const PinMap static_pinmap = {pin, peripheral, function};
 | 
						|
 | 
						|
    PWM_INIT_DIRECT(obj, &static_pinmap);
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_free(pwmout_t *obj)
 | 
						|
{
 | 
						|
    // Configure GPIO back to reset value
 | 
						|
    pin_function(obj->pin, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_write(pwmout_t *obj, float value)
 | 
						|
{
 | 
						|
    TIM_OC_InitTypeDef sConfig;
 | 
						|
    int channel = 0;
 | 
						|
 | 
						|
    TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
 | 
						|
 | 
						|
    if (value < (float)0.0) {
 | 
						|
        value = 0.0;
 | 
						|
    } else if (value > (float)1.0) {
 | 
						|
        value = 1.0;
 | 
						|
    }
 | 
						|
 | 
						|
    obj->pulse = (uint32_t)((float)obj->period * value + 0.5);
 | 
						|
 | 
						|
    // Configure channels
 | 
						|
    sConfig.OCMode       = TIM_OCMODE_PWM1;
 | 
						|
    sConfig.Pulse        = obj->pulse / obj->prescaler;
 | 
						|
    sConfig.OCPolarity   = TIM_OCPOLARITY_HIGH;
 | 
						|
    sConfig.OCFastMode   = TIM_OCFAST_DISABLE;
 | 
						|
#if defined(TIM_OCIDLESTATE_RESET)
 | 
						|
    sConfig.OCIdleState  = TIM_OCIDLESTATE_RESET;
 | 
						|
#endif
 | 
						|
#if defined(TIM_OCNIDLESTATE_RESET)
 | 
						|
    sConfig.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
 | 
						|
    sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
 | 
						|
#endif
 | 
						|
 | 
						|
    switch (obj->channel) {
 | 
						|
        case 1:
 | 
						|
            channel = TIM_CHANNEL_1;
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            channel = TIM_CHANNEL_2;
 | 
						|
            break;
 | 
						|
        case 3:
 | 
						|
            channel = TIM_CHANNEL_3;
 | 
						|
            break;
 | 
						|
        case 4:
 | 
						|
            channel = TIM_CHANNEL_4;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LL_TIM_CC_IsEnabledChannel(TimHandle.Instance, TIM_ChannelConvert_HAL2LL(channel, obj)) == 0) {
 | 
						|
        // If channel is not enabled, proceed to channel configuration
 | 
						|
        if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) {
 | 
						|
            error("Cannot initialize PWM\n");
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        // If channel already enabled, only update compare value to avoid glitch
 | 
						|
        __HAL_TIM_SET_COMPARE(&TimHandle, channel, sConfig.Pulse);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
#if !defined(PWMOUT_INVERTED_NOT_SUPPORTED)
 | 
						|
    if (obj->inverted) {
 | 
						|
        HAL_TIMEx_PWMN_Start(&TimHandle, channel);
 | 
						|
    } else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
        HAL_TIM_PWM_Start(&TimHandle, channel);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
float pwmout_read(pwmout_t *obj)
 | 
						|
{
 | 
						|
    float value = 0;
 | 
						|
    if (obj->period > 0) {
 | 
						|
        value = (float)(obj->pulse) / (float)(obj->period);
 | 
						|
    }
 | 
						|
    return ((value > (float)1.0) ? (float)(1.0) : (value));
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_period(pwmout_t *obj, float seconds)
 | 
						|
{
 | 
						|
    pwmout_period_us(obj, seconds * 1000000.0f);
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_period_ms(pwmout_t *obj, int ms)
 | 
						|
{
 | 
						|
    pwmout_period_us(obj, ms * 1000);
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_period_us(pwmout_t *obj, int us)
 | 
						|
{
 | 
						|
    TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
 | 
						|
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
 | 
						|
    uint32_t PclkFreq = 0;
 | 
						|
    uint32_t APBxCLKDivider = RCC_HCLK_DIV1;
 | 
						|
    float dc = pwmout_read(obj);
 | 
						|
    uint8_t i = 0;
 | 
						|
 | 
						|
    __HAL_TIM_DISABLE(&TimHandle);
 | 
						|
 | 
						|
    // Get clock configuration
 | 
						|
    // Note: PclkFreq contains here the Latency (not used after)
 | 
						|
    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);
 | 
						|
 | 
						|
    /*  Parse the pwm / apb mapping table to find the right entry */
 | 
						|
    while (pwm_apb_map_table[i].pwm != obj->pwm) {
 | 
						|
        i++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (pwm_apb_map_table[i].pwm == 0) {
 | 
						|
        error("Unknown PWM instance");
 | 
						|
    }
 | 
						|
 | 
						|
    if (pwm_apb_map_table[i].pwmoutApb == PWMOUT_ON_APB1) {
 | 
						|
        PclkFreq = HAL_RCC_GetPCLK1Freq();
 | 
						|
        APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
 | 
						|
    } else {
 | 
						|
#if !defined(PWMOUT_APB2_NOT_SUPPORTED)
 | 
						|
        PclkFreq = HAL_RCC_GetPCLK2Freq();
 | 
						|
        APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /* By default use, 1us as SW pre-scaler */
 | 
						|
    obj->prescaler = 1;
 | 
						|
    // TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
 | 
						|
    if (APBxCLKDivider == RCC_HCLK_DIV1) {
 | 
						|
        TimHandle.Init.Prescaler = (((PclkFreq) / 1000000)) - 1; // 1 us tick
 | 
						|
    } else {
 | 
						|
        TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000)) - 1; // 1 us tick
 | 
						|
    }
 | 
						|
    TimHandle.Init.Period = (us - 1);
 | 
						|
 | 
						|
    /*  In case period or pre-scalers are out of range, loop-in to get valid values */
 | 
						|
    while ((TimHandle.Init.Period > 0xFFFF) || (TimHandle.Init.Prescaler > 0xFFFF)) {
 | 
						|
        obj->prescaler = obj->prescaler * 2;
 | 
						|
        if (APBxCLKDivider == RCC_HCLK_DIV1) {
 | 
						|
            TimHandle.Init.Prescaler = (((PclkFreq) / 1000000) * obj->prescaler) - 1;
 | 
						|
        } else {
 | 
						|
            TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000) * obj->prescaler) - 1;
 | 
						|
        }
 | 
						|
        TimHandle.Init.Period = (us - 1) / obj->prescaler;
 | 
						|
        /*  Period decreases and prescaler increases over loops, so check for
 | 
						|
         *  possible out of range cases */
 | 
						|
        if ((TimHandle.Init.Period < 0xFFFF) && (TimHandle.Init.Prescaler > 0xFFFF)) {
 | 
						|
            error("Cannot initialize PWM\n");
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    TimHandle.Init.ClockDivision = 0;
 | 
						|
    TimHandle.Init.CounterMode   = TIM_COUNTERMODE_UP;
 | 
						|
 | 
						|
    if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
 | 
						|
        error("Cannot initialize PWM\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // Save for future use
 | 
						|
    obj->period = us;
 | 
						|
 | 
						|
    // Set duty cycle again
 | 
						|
    pwmout_write(obj, dc);
 | 
						|
 | 
						|
    __HAL_TIM_ENABLE(&TimHandle);
 | 
						|
}
 | 
						|
 | 
						|
int pwmout_read_period_us(pwmout_t *obj)
 | 
						|
{
 | 
						|
    return obj->period;
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_pulsewidth(pwmout_t *obj, float seconds)
 | 
						|
{
 | 
						|
    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_pulsewidth_ms(pwmout_t *obj, int ms)
 | 
						|
{
 | 
						|
    pwmout_pulsewidth_us(obj, ms * 1000);
 | 
						|
}
 | 
						|
 | 
						|
void pwmout_pulsewidth_us(pwmout_t *obj, int us)
 | 
						|
{
 | 
						|
    float value = (float)us / (float)obj->period;
 | 
						|
    pwmout_write(obj, value);
 | 
						|
}
 | 
						|
 | 
						|
int pwmout_read_pulsewidth_us(pwmout_t *obj)
 | 
						|
{
 | 
						|
    float pwm_duty_cycle = pwmout_read(obj);
 | 
						|
    return (int)(pwm_duty_cycle * (float)obj->period);
 | 
						|
}
 | 
						|
 | 
						|
const PinMap *pwmout_pinmap()
 | 
						|
{
 | 
						|
    return PinMap_PWM;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |