mbed-os/features/frameworks/nanostack-libservice/mbed-client-libservice/ns_list.h

739 lines
26 KiB
C

/*
* Copyright (c) 2014-2015 ARM Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef NS_LIST_H_
#define NS_LIST_H_
#include "ns_types.h"
#ifdef __cplusplus
extern "C" {
#endif
/** \file
* \brief Linked list support library
*
* The ns_list.h file provides a doubly-linked list/queue, providing O(1)
* performance for all insertion/removal operations, and access to either
* end of the list.
*
* Memory footprint is two pointers for the list head, and two pointers in each
* list entry. It is similar in concept to BSD's TAILQ.
*
* Although the API is symmetrical and O(1) in both directions, due to internal
* pointer design, it is *slightly* more efficient to insert at the end when
* used as a queue, and to iterate forwards rather than backwards.
*
* Example of an entry type that can be stored to this list.
* ~~~
* typedef struct example_entry
* {
* uint8_t *data;
* uint32_t data_count;
* ns_list_link_t link;
* }
* example_entry_t;
*
* static NS_LIST_HEAD(example_entry_t, link) my_list;
* ns_list_init(&my_list);
* ~~~
* OR
* ~~~
* NS_LIST_HEAD(example_entry_t, link) my_list = NS_LIST_INIT(my_list);
* ~~~
* OR
* ~~~
* static NS_LIST_DEFINE(my_list, example_entry_t, link);
* ~~~
* OR
* ~~~
* typedef NS_LIST_HEAD(example_entry_t, link) example_list_t;
* example_list_t NS_LIST_NAME_INIT(my_list);
* ~~~
* NOTE: the link field SHALL NOT be accessed by the user.
*
* An entry can exist on multiple lists by having multiple link fields.
*
* All the list operations are implemented as macros, most of which are backed
* by optionally-inline functions. The macros do not evaluate any arguments more
* than once, unless documented.
*
* In macro documentation, `list_t` refers to a list type defined using
* NS_LIST_HEAD(), and `entry_t` to the entry type that was passed to it.
*/
/** \brief Underlying generic linked list head.
*
* Users should not use this type directly, but use the NS_LIST_HEAD() macro.
*/
typedef struct ns_list {
void *first_entry; ///< Pointer to first entry, or NULL if list is empty
void **last_nextptr; ///< Pointer to last entry's `next` pointer, or
///< to head's `first_entry` pointer if list is empty
} ns_list_t;
/** \brief Declare a list head type
*
* This union stores the real list head, and also encodes as compile-time type
* information the offset of the link pointer, and the type of the entry.
*
* Note that type information is compiler-dependent; this means
* ns_list_get_first() could return either `void *`, or a pointer to the actual
* entry type. So `ns_list_get_first()->data` is not a portable construct -
* always assign returned entry pointers to a properly typed pointer variable.
* This assignment will be then type-checked where the compiler supports it, and
* will dereference correctly on compilers that don't support this extension.
* ~~~
* NS_LIST_HEAD(example_entry_t, link) my_list;
*
* example_entry_t *entry = ns_list_get_first(&my_list);
* do_something(entry->data);
* ~~~
* Each use of this macro generates a new anonymous union, so these two lists
* have different types:
* ~~~
* NS_LIST_HEAD(example_entry_t, link) my_list1;
* NS_LIST_HEAD(example_entry_t, link) my_list2;
* ~~~
* If you need to use a list type in multiple places, eg as a function
* parameter, use typedef:
* ~~~
* typedef NS_LIST_HEAD(example_entry_t, link) example_list_t;
*
* void example_function(example_list_t *);
* ~~~
*/
#define NS_LIST_HEAD(entry_type, field) \
NS_LIST_HEAD_BY_OFFSET_(entry_type, offsetof(entry_type, field))
/** \brief Declare a list head type for an incomplete entry type.
*
* This declares a list head, similarly to NS_LIST_HEAD(), but unlike that
* this can be used in contexts where the entry type may be incomplete.
*
* To use this, the link pointer must be the first member in the
* actual complete structure. This is NOT checked - the definition of the
* element should probably test NS_STATIC_ASSERT(offsetof(type, link) == 0)
* if outside users are known to be using NS_LIST_HEAD_INCOMPLETE().
* ~~~
* struct opaque;
* NS_LIST_HEAD_INCOMPLETE(struct opaque) opaque_list;
* ~~~
*/
#define NS_LIST_HEAD_INCOMPLETE(entry_type) \
NS_LIST_HEAD_BY_OFFSET_(entry_type, 0)
/// \privatesection
/** \brief Internal macro defining a list head, given the offset to the link pointer
* The +1 allows for link_offset being 0 - we can't declare a 0-size array
*/
#define NS_LIST_HEAD_BY_OFFSET_(entry_type, link_offset) \
union \
{ \
ns_list_t slist; \
NS_FUNNY_COMPARE_OK \
NS_STATIC_ASSERT(link_offset <= UINT_FAST8_MAX, "link offset too large") \
NS_FUNNY_COMPARE_RESTORE \
char (*offset)[link_offset + 1]; \
entry_type *type; \
}
/** \brief Get offset of link field in entry.
* \return `(ns_list_offset_t)` The offset of the link field for entries on the specified list
*/
#define NS_LIST_OFFSET_(list) ((ns_list_offset_t) (sizeof *(list)->offset - 1))
/** \brief Get the entry pointer type.
* \def NS_LIST_PTR_TYPE_
*
* \return An unqualified pointer type to an entry on the specified list.
*
* Only available if the compiler provides a "typeof" operator.
*/
#if defined __cplusplus && __cplusplus >= 201103L
#define NS_LIST_PTR_TYPE_(list) decltype((list)->type)
#elif defined __GNUC__
#define NS_LIST_PTR_TYPE_(list) __typeof__((list)->type)
#endif
/** \brief Check for compatible pointer types
*
* This test will produce a diagnostic about a pointer mismatch on
* the == inside the sizeof operator. For example ARM/Norcroft C gives the error:
*
* operand types are incompatible ("entry_t *" and "other_t *")
*/
#ifdef CPPCHECK
#define NS_PTR_MATCH_(a, b, str) ((void) 0)
#else
#define NS_PTR_MATCH_(a, b, str) ((void) sizeof ((a) == (b)))
#endif
/** \brief Internal macro to cast returned entry pointers to correct type.
*
* Not portable in C, alas. With GCC or C++11, the "get entry" macros return
* correctly-typed pointers. Otherwise, the macros return `void *`.
*
* The attempt at a portable version would work if the C `?:` operator wasn't
* broken - `x ? (t *) : (void *)` should really have type `(t *)` in C, but
* it has type `(void *)`, which only makes sense for C++. The `?:` is left in,
* in case some day it works. Some compilers may still warn if this is
* assigned to a different type.
*/
#ifdef NS_LIST_PTR_TYPE_
#define NS_LIST_TYPECAST_(list, val) ((NS_LIST_PTR_TYPE_(list)) (val))
#else
#define NS_LIST_TYPECAST_(list, val) (0 ? (list)->type : (val))
#endif
/** \brief Internal macro to check types of input entry pointer. */
#define NS_LIST_TYPECHECK_(list, entry) \
(NS_PTR_MATCH_((list)->type, (entry), "incorrect entry type for list"), (entry))
/** \brief Type used to pass link offset to underlying functions
*
* We could use size_t, but it would be unnecessarily large on 8-bit systems,
* where we can be (pretty) confident we won't have next pointers more than
* 256 bytes into a structure.
*/
typedef uint_fast8_t ns_list_offset_t;
/// \publicsection
/** \brief The type for the link member in the user's entry structure.
*
* Users should not access this member directly - just pass its name to the
* list head macros. The funny prev pointer simplifies common operations
* (eg insertion, removal), at the expense of complicating rare reverse iteration.
*
* NB - the list implementation relies on next being the first member.
*/
typedef struct ns_list_link {
void *next; ///< Pointer to next entry, or NULL if none
void **prev; ///< Pointer to previous entry's (or head's) next pointer
} ns_list_link_t;
/** \brief "Poison" value placed in unattached entries' link pointers.
* \internal What are good values for this? Platform dependent, maybe just NULL
*/
#define NS_LIST_POISON ((void *) 0xDEADBEEF)
/** \brief Initialiser for an entry's link member
*
* This initialiser is not required by the library, but a user may want an
* initialiser to include in their own entry initialiser. See
* ns_list_link_init() for more discussion.
*/
#define NS_LIST_LINK_INIT(name) \
NS_FUNNY_INTPTR_OK \
{ NS_LIST_POISON, NS_LIST_POISON } \
NS_FUNNY_INTPTR_RESTORE
/** \hideinitializer \brief Initialise an entry's list link
*
* This "initialises" an unattached entry's link by filling the fields with
* poison. This is optional, as unattached entries field pointers are not
* meaningful, and it is not valid to call ns_list_get_next or similar on
* an unattached entry.
*
* \param entry Pointer to an entry
* \param field The name of the link member to initialise
*/
#define ns_list_link_init(entry, field) ns_list_link_init_(&(entry)->field)
/** \hideinitializer \brief Initialise a list
*
* Initialise a list head before use. A list head must be initialised using this
* function or one of the NS_LIST_INIT()-type macros before use. A zero-initialised
* list head is *not* valid.
*
* If used on a list containing existing entries, those entries will
* become detached. (They are not modified, but their links are now effectively
* undefined).
*
* \param list Pointer to a NS_LIST_HEAD() structure.
*/
#define ns_list_init(list) ns_list_init_(&(list)->slist)
/** \brief Initialiser for an empty list
*
* Usage in an enclosing initialiser:
* ~~~
* static my_type_including_list_t x = {
* "Something",
* 23,
* NS_LIST_INIT(x),
* };
* ~~~
* NS_LIST_DEFINE() or NS_LIST_NAME_INIT() may provide a shorter alternative
* in simpler cases.
*/
#define NS_LIST_INIT(name) { { NULL, &(name).slist.first_entry } }
/** \brief Name and initialiser for an empty list
*
* Usage:
* ~~~
* list_t NS_LIST_NAME_INIT(foo);
* ~~~
* acts as
* ~~~
* list_t foo = { empty list };
* ~~~
* Also useful with designated initialisers:
* ~~~
* .NS_LIST_NAME_INIT(foo),
* ~~~
* acts as
* ~~~
* .foo = { empty list },
* ~~~
*/
#define NS_LIST_NAME_INIT(name) name = NS_LIST_INIT(name)
/** \brief Define a list, and initialise to empty.
*
* Usage:
* ~~~
* static NS_LIST_DEFINE(my_list, entry_t, link);
* ~~~
* acts as
* ~~~
* static list_type my_list = { empty list };
* ~~~
*/
#define NS_LIST_DEFINE(name, type, field) \
NS_LIST_HEAD(type, field) NS_LIST_NAME_INIT(name)
/** \hideinitializer \brief Add an entry to the start of the linked list.
*
* ns_list_add_to_end() is *slightly* more efficient than ns_list_add_to_start().
*
* \param list `(list_t *)` Pointer to list.
* \param entry `(entry_t * restrict)` Pointer to new entry to add.
*/
#define ns_list_add_to_start(list, entry) \
ns_list_add_to_start_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, entry))
/** \hideinitializer \brief Add an entry to the end of the linked list.
*
* \param list `(list_t *)` Pointer to list.
* \param entry `(entry_t * restrict)` Pointer to new entry to add.
*/
#define ns_list_add_to_end(list, entry) \
ns_list_add_to_end_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, entry))
/** \hideinitializer \brief Add an entry before a specified entry.
*
* \param list `(list_t *)` Pointer to list.
* \param before `(entry_t *)` Existing entry before which to place the new entry.
* \param entry `(entry_t * restrict)` Pointer to new entry to add.
*/
#define ns_list_add_before(list, before, entry) \
ns_list_add_before_(NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, before), NS_LIST_TYPECHECK_(list, entry))
/** \hideinitializer \brief Add an entry after a specified entry.
*
* ns_list_add_before() is *slightly* more efficient than ns_list_add_after().
*
* \param list `(list_t *)` Pointer to list.
* \param after `(entry_t *)` Existing entry after which to place the new entry.
* \param entry `(entry_t * restrict)` Pointer to new entry to add.
*/
#define ns_list_add_after(list, after, entry) \
ns_list_add_after_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, after), NS_LIST_TYPECHECK_(list, entry))
/** \brief Check if a list is empty.
*
* \param list `(const list_t *)` Pointer to list.
*
* \return `(bool)` true if the list is empty.
*/
#define ns_list_is_empty(list) ((bool) ((list)->slist.first_entry == NULL))
/** \brief Get the first entry.
*
* \param list `(const list_t *)` Pointer to list.
*
* \return `(entry_t *)` Pointer to first entry.
* \return NULL if list is empty.
*/
#define ns_list_get_first(list) NS_LIST_TYPECAST_(list, (list)->slist.first_entry)
/** \hideinitializer \brief Get the previous entry.
*
* \param list `(const list_t *)` Pointer to list.
* \param current `(const entry_t *)` Pointer to current entry.
*
* \return `(entry_t *)` Pointer to previous entry.
* \return NULL if current entry is first.
*/
#define ns_list_get_previous(list, current) \
NS_LIST_TYPECAST_(list, ns_list_get_previous_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, current)))
/** \hideinitializer \brief Get the next entry.
*
* \param list `(const list_t *)` Pointer to list.
* \param current `(const entry_t *)` Pointer to current entry.
*
* \return `(entry_t *)` Pointer to next entry.
* \return NULL if current entry is last.
*/
#define ns_list_get_next(list, current) \
NS_LIST_TYPECAST_(list, ns_list_get_next_(NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, current)))
/** \hideinitializer \brief Get the last entry.
*
* \param list `(const list_t *)` Pointer to list.
*
* \return `(entry_t *)` Pointer to last entry.
* \return NULL if list is empty.
*/
#define ns_list_get_last(list) \
NS_LIST_TYPECAST_(list, ns_list_get_last_(&(list)->slist, NS_LIST_OFFSET_(list)))
/** \hideinitializer \brief Remove an entry.
*
* \param list `(list_t *)` Pointer to list.
* \param entry `(entry_t *)` Entry on list to be removed.
*/
#define ns_list_remove(list, entry) \
ns_list_remove_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, entry))
/** \hideinitializer \brief Replace an entry.
*
* \param list `(list_t *)` Pointer to list.
* \param current `(entry_t *)` Existing entry on list to be replaced.
* \param replacement `(entry_t * restrict)` New entry to be the replacement.
*/
#define ns_list_replace(list, current, replacement) \
ns_list_replace_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, current), NS_LIST_TYPECHECK_(list, replacement))
/** \hideinitializer \brief Concatenate two lists.
*
* Attach the entries on the source list to the end of the destination
* list, leaving the source list empty.
*
* \param dst `(list_t *)` Pointer to destination list.
* \param src `(list_t *)` Pointer to source list.
*
*/
#define ns_list_concatenate(dst, src) \
(NS_PTR_MATCH_(dst, src, "concatenating different list types"), \
ns_list_concatenate_(&(dst)->slist, &(src)->slist, NS_LIST_OFFSET_(src)))
/** \brief Iterate forwards over a list.
*
* Example:
* ~~~
* ns_list_foreach(const my_entry_t, cur, &my_list)
* {
* printf("%s\n", cur->name);
* }
* ~~~
* Deletion of the current entry is not permitted as its next is checked after
* running user code.
*
* The iteration pointer is declared inside the loop, using C99/C++, so it
* is not accessible after the loop. This encourages good code style, and
* matches the semantics of C++11's "ranged for", which only provides the
* declaration form:
* ~~~
* for (const my_entry_t cur : my_list)
* ~~~
* If you need to see the value of the iteration pointer after a `break`,
* you will need to assign it to a variable declared outside the loop before
* breaking:
* ~~~
* my_entry_t *match = NULL;
* ns_list_foreach(my_entry_t, cur, &my_list)
* {
* if (cur->id == id)
* {
* match = cur;
* break;
* }
* }
* ~~~
*
* The user has to specify the entry type for the pointer definition, as type
* extraction from the list argument isn't portable. On the other hand, this
* also permits const qualifiers, as in the example above, and serves as
* documentation. The entry type will be checked against the list type where the
* compiler supports it.
*
* \param type Entry type `([const] entry_t)`.
* \param e Name for iteration pointer to be defined
* inside the loop.
* \param list `(const list_t *)` Pointer to list - evaluated multiple times.
*/
#define ns_list_foreach(type, e, list) \
for (type *e = ns_list_get_first(list); e; e = ns_list_get_next(list, e))
/** \brief Iterate forwards over a list, where user may delete.
*
* As ns_list_foreach(), but deletion of current entry is permitted as its
* next pointer is recorded before running user code.
*
* Example:
* ~~~
* ns_list_foreach_safe(my_entry_t, cur, &my_list)
* {
* ns_list_remove(cur);
* }
* ~~~
* \param type Entry type `(entry_t)`.
* \param e Name for iteration pointer to be defined
* inside the loop.
* \param list `(list_t *)` Pointer to list - evaluated multiple times.
*/
#define ns_list_foreach_safe(type, e, list) \
for (type *e = ns_list_get_first(list), *_next##e; \
e && (_next##e = ns_list_get_next(list, e), true); e = _next##e)
/** \brief Iterate backwards over a list.
*
* As ns_list_foreach(), but going backwards - see its documentation.
* Iterating forwards is *slightly* more efficient.
*/
#define ns_list_foreach_reverse(type, e, list) \
for (type *e = ns_list_get_last(list); e; e = ns_list_get_previous(list, e))
/** \brief Iterate backwards over a list, where user may delete.
*
* As ns_list_foreach_safe(), but going backwards - see its documentation.
* Iterating forwards is *slightly* more efficient.
*/
#define ns_list_foreach_reverse_safe(type, e, list) \
for (type *e = ns_list_get_last(list), *_next##e; \
e && (_next##e = ns_list_get_previous(list, e), true); e = _next##e)
/** \hideinitializer \brief Count entries on a list
*
* Unlike other operations, this is O(n). Note: if list might contain over
* 65535 entries, this function **must not** be used to get the entry count.
*
* \param list `(const list_t *)` Pointer to list.
* \return `(uint_fast16_t)` Number of entries that are stored in list.
*/
#define ns_list_count(list) ns_list_count_(&(list)->slist, NS_LIST_OFFSET_(list))
/** \privatesection
* Internal functions - designed to be accessed using corresponding macros above
*/
NS_INLINE void ns_list_init_(ns_list_t *list);
NS_INLINE void ns_list_link_init_(ns_list_link_t *link);
NS_INLINE void ns_list_add_to_start_(ns_list_t *list, ns_list_offset_t link_offset, void *restrict entry);
NS_INLINE void ns_list_add_to_end_(ns_list_t *list, ns_list_offset_t link_offset, void *restrict entry);
NS_INLINE void ns_list_add_before_(ns_list_offset_t link_offset, void *before, void *restrict entry);
NS_INLINE void ns_list_add_after_(ns_list_t *list, ns_list_offset_t link_offset, void *after, void *restrict entry);
NS_INLINE void *ns_list_get_next_(ns_list_offset_t link_offset, const void *current);
NS_INLINE void *ns_list_get_previous_(const ns_list_t *list, ns_list_offset_t link_offset, const void *current);
NS_INLINE void *ns_list_get_last_(const ns_list_t *list, ns_list_offset_t offset);
NS_INLINE void ns_list_remove_(ns_list_t *list, ns_list_offset_t link_offset, void *entry);
NS_INLINE void ns_list_replace_(ns_list_t *list, ns_list_offset_t link_offset, void *current, void *restrict replacement);
NS_INLINE void ns_list_concatenate_(ns_list_t *dst, ns_list_t *src, ns_list_offset_t offset);
NS_INLINE uint_fast16_t ns_list_count_(const ns_list_t *list, ns_list_offset_t link_offset);
/* Provide definitions, either for inlining, or for ns_list.c */
#if defined NS_ALLOW_INLINING || defined NS_LIST_FN
#ifndef NS_LIST_FN
#define NS_LIST_FN NS_INLINE
#endif
/* Pointer to the link member in entry e */
#define NS_LIST_LINK_(e, offset) ((ns_list_link_t *)((char *)(e) + offset))
/* Lvalue of the next link pointer in entry e */
#define NS_LIST_NEXT_(e, offset) (NS_LIST_LINK_(e, offset)->next)
/* Lvalue of the prev link pointer in entry e */
#define NS_LIST_PREV_(e, offset) (NS_LIST_LINK_(e, offset)->prev)
/* Convert a pointer to a link member back to the entry;
* works for linkptr either being a ns_list_link_t pointer, or its next pointer,
* as the next pointer is first in the ns_list_link_t */
#define NS_LIST_ENTRY_(linkptr, offset) ((void *)((char *)(linkptr) - offset))
NS_LIST_FN void ns_list_init_(ns_list_t *list)
{
list->first_entry = NULL;
list->last_nextptr = &list->first_entry;
}
NS_LIST_FN void ns_list_link_init_(ns_list_link_t *link)
{
NS_FUNNY_INTPTR_OK
link->next = NS_LIST_POISON;
link->prev = NS_LIST_POISON;
NS_FUNNY_INTPTR_RESTORE
}
NS_LIST_FN void ns_list_add_to_start_(ns_list_t *list, ns_list_offset_t offset, void *restrict entry)
{
void *next;
NS_LIST_PREV_(entry, offset) = &list->first_entry;
NS_LIST_NEXT_(entry, offset) = next = list->first_entry;
if (next) {
NS_LIST_PREV_(next, offset) = &NS_LIST_NEXT_(entry, offset);
} else {
list->last_nextptr = &NS_LIST_NEXT_(entry, offset);
}
list->first_entry = entry;
}
NS_LIST_FN void ns_list_add_after_(ns_list_t *list, ns_list_offset_t offset, void *current, void *restrict entry)
{
void *next;
NS_LIST_PREV_(entry, offset) = &NS_LIST_NEXT_(current, offset);
NS_LIST_NEXT_(entry, offset) = next = NS_LIST_NEXT_(current, offset);
if (next) {
NS_LIST_PREV_(next, offset) = &NS_LIST_NEXT_(entry, offset);
} else {
list->last_nextptr = &NS_LIST_NEXT_(entry, offset);
}
NS_LIST_NEXT_(current, offset) = entry;
}
NS_LIST_FN void ns_list_add_before_(ns_list_offset_t offset, void *current, void *restrict entry)
{
void **prev_nextptr;
NS_LIST_NEXT_(entry, offset) = current;
NS_LIST_PREV_(entry, offset) = prev_nextptr = NS_LIST_PREV_(current, offset);
*prev_nextptr = entry;
NS_LIST_PREV_(current, offset) = &NS_LIST_NEXT_(entry, offset);
}
NS_LIST_FN void ns_list_add_to_end_(ns_list_t *list, ns_list_offset_t offset, void *restrict entry)
{
void **prev_nextptr;
NS_LIST_NEXT_(entry, offset) = NULL;
NS_LIST_PREV_(entry, offset) = prev_nextptr = list->last_nextptr;
*prev_nextptr = entry;
list->last_nextptr = &NS_LIST_NEXT_(entry, offset);
}
NS_LIST_FN void *ns_list_get_next_(ns_list_offset_t offset, const void *current)
{
return NS_LIST_NEXT_(current, offset);
}
NS_LIST_FN void *ns_list_get_previous_(const ns_list_t *list, ns_list_offset_t offset, const void *current)
{
if (current == list->first_entry) {
return NULL;
}
// Tricky. We don't have a direct previous pointer, but a pointer to the
// pointer that points to us - ie &head->first_entry OR &{prev}->next.
// This makes life easier on insertion and removal, but this is where we
// pay the price.
// We have to check manually for being the first entry above, so we know it's
// a real link's next pointer. Then next is the first field of
// ns_list_link_t, so we can use the normal offset value.
return NS_LIST_ENTRY_(NS_LIST_PREV_(current, offset), offset);
}
NS_LIST_FN void *ns_list_get_last_(const ns_list_t *list, ns_list_offset_t offset)
{
if (!list->first_entry) {
return NULL;
}
// See comments in ns_list_get_previous_()
return NS_LIST_ENTRY_(list->last_nextptr, offset);
}
NS_LIST_FN void ns_list_remove_(ns_list_t *list, ns_list_offset_t offset, void *removed)
{
void *next;
void **prev_nextptr;
next = NS_LIST_NEXT_(removed, offset);
prev_nextptr = NS_LIST_PREV_(removed, offset);
if (next) {
NS_LIST_PREV_(next, offset) = prev_nextptr;
} else {
list->last_nextptr = prev_nextptr;
}
*prev_nextptr = next;
ns_list_link_init_(NS_LIST_LINK_(removed, offset));
}
NS_LIST_FN void ns_list_replace_(ns_list_t *list, ns_list_offset_t offset, void *current, void *restrict replacement)
{
void *next;
void **prev_nextptr;
NS_LIST_PREV_(replacement, offset) = prev_nextptr = NS_LIST_PREV_(current, offset);
NS_LIST_NEXT_(replacement, offset) = next = NS_LIST_NEXT_(current, offset);
if (next) {
NS_LIST_PREV_(next, offset) = &NS_LIST_NEXT_(replacement, offset);
} else {
list->last_nextptr = &NS_LIST_NEXT_(replacement, offset);
}
*prev_nextptr = replacement;
ns_list_link_init_(NS_LIST_LINK_(current, offset));
}
NS_LIST_FN void ns_list_concatenate_(ns_list_t *dst, ns_list_t *src, ns_list_offset_t offset)
{
ns_list_link_t *src_first;
src_first = src->first_entry;
if (!src_first) {
return;
}
*dst->last_nextptr = src_first;
NS_LIST_PREV_(src_first, offset) = dst->last_nextptr;
dst->last_nextptr = src->last_nextptr;
ns_list_init_(src);
}
NS_LIST_FN uint_fast16_t ns_list_count_(const ns_list_t *list, ns_list_offset_t offset)
{
uint_fast16_t count = 0;
for (void *p = list->first_entry; p; p = NS_LIST_NEXT_(p, offset)) {
count++;
}
return count;
}
#endif /* defined NS_ALLOW_INLINING || defined NS_LIST_FN */
#ifdef __cplusplus
}
#endif
#endif /* NS_LIST_H_ */