mbed-os/targets/TARGET_STM/us_ticker.c

281 lines
8.0 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2018 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if DEVICE_USTICKER
#include <stddef.h>
#include "us_ticker_api.h"
#include "PeripheralNames.h"
#include "us_ticker_data.h"
#include "us_ticker_defines.h"
TIM_HandleTypeDef TimMasterHandle;
uint32_t timer_cnt_reg;
uint32_t timer_ccr1_reg;
uint32_t timer_dier_reg;
const ticker_info_t *us_ticker_get_info()
{
static const ticker_info_t info = {
1000000,
TIM_MST_BIT_WIDTH
};
return &info;
}
void us_ticker_irq_handler(void);
// ************************************ 16-bit timer ************************************
#if TIM_MST_BIT_WIDTH == 16
#if defined(TARGET_STM32F0)
void timer_update_irq_handler(void)
{
#else
void timer_irq_handler(void)
{
#endif
TimMasterHandle.Instance = TIM_MST;
#if defined(TARGET_STM32F0)
} // end timer_update_irq_handler function
void timer_oc_irq_handler(void)
{
TimMasterHandle.Instance = TIM_MST;
#endif
if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) {
if (__HAL_TIM_GET_IT_SOURCE(&TimMasterHandle, TIM_IT_CC1) == SET) {
__HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_CC1);
us_ticker_irq_handler();
}
}
}
void init_16bit_timer(void)
{
// Enable timer clock
TIM_MST_RCC;
// Reset timer
#if defined(DUAL_CORE)
while (LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID)) {
}
#endif /* DUAL_CORE */
TIM_MST_RESET_ON;
TIM_MST_RESET_OFF;
#if defined(DUAL_CORE)
LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, HSEM_CR_COREID_CURRENT);
#endif /* DUAL_CORE */
// Update the SystemCoreClock variable
SystemCoreClockUpdate();
// Configure time base
TimMasterHandle.Instance = TIM_MST;
TimMasterHandle.Init.Period = 0xFFFF;
TimMasterHandle.Init.Prescaler = (uint32_t)(SystemCoreClock / 1000000) - 1; // 1 us tick
TimMasterHandle.Init.ClockDivision = 0;
TimMasterHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
#if !defined(TARGET_STM32L0) && !defined(TARGET_STM32L1)
TimMasterHandle.Init.RepetitionCounter = 0;
#endif
#ifdef TIM_AUTORELOAD_PRELOAD_DISABLE
TimMasterHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#endif
HAL_TIM_Base_Init(&TimMasterHandle);
// Configure output compare channel 1 for mbed timeout (enabled later when used)
HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_1);
// Output compare channel 1 interrupt for mbed timeout
#if defined(TARGET_STM32F0)
NVIC_SetVector(TIM_MST_UP_IRQ, (uint32_t)timer_update_irq_handler);
NVIC_EnableIRQ(TIM_MST_UP_IRQ);
NVIC_SetPriority(TIM_MST_UP_IRQ, 0);
NVIC_SetVector(TIM_MST_OC_IRQ, (uint32_t)timer_oc_irq_handler);
NVIC_EnableIRQ(TIM_MST_OC_IRQ);
NVIC_SetPriority(TIM_MST_OC_IRQ, 1);
#else
NVIC_SetVector(TIM_MST_IRQ, (uint32_t)timer_irq_handler);
NVIC_EnableIRQ(TIM_MST_IRQ);
#endif
// Enable timer
HAL_TIM_Base_Start(&TimMasterHandle);
// Freeze timer on stop/breakpoint
// Define the FREEZE_TIMER_ON_DEBUG macro in mbed_app.json for example
#if !defined(NDEBUG) && defined(FREEZE_TIMER_ON_DEBUG) && defined(TIM_MST_DBGMCU_FREEZE)
TIM_MST_DBGMCU_FREEZE;
#endif
__HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}
// ************************************ 32-bit timer ************************************
#else
void timer_irq_handler(void)
{
TimMasterHandle.Instance = TIM_MST;
if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) {
if (__HAL_TIM_GET_IT_SOURCE(&TimMasterHandle, TIM_IT_CC1) == SET) {
__HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_CC1);
us_ticker_irq_handler();
}
}
}
void init_32bit_timer(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
uint32_t PclkFreq;
// Get clock configuration
// Note: PclkFreq contains here the Latency (not used after)
HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);
// Get timer clock value
#if TIM_MST_PCLK == 1
PclkFreq = HAL_RCC_GetPCLK1Freq();
#else
PclkFreq = HAL_RCC_GetPCLK2Freq();
#endif
// Enable timer clock
TIM_MST_RCC;
// Reset timer
#if defined(DUAL_CORE)
while (LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID)) {
}
#endif /* DUAL_CORE */
TIM_MST_RESET_ON;
TIM_MST_RESET_OFF;
#if defined(DUAL_CORE)
LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, HSEM_CR_COREID_CURRENT);
#endif /* DUAL_CORE */
// Configure time base
TimMasterHandle.Instance = TIM_MST;
TimMasterHandle.Init.Period = 0xFFFFFFFF;
// TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
#if TIM_MST_PCLK == 1
if (RCC_ClkInitStruct.APB1CLKDivider == RCC_HCLK_DIV1) {
#else
if (RCC_ClkInitStruct.APB2CLKDivider == RCC_HCLK_DIV1) {
#endif
TimMasterHandle.Init.Prescaler = (uint16_t)((PclkFreq) / 1000000) - 1; // 1 us tick
} else {
TimMasterHandle.Init.Prescaler = (uint16_t)((PclkFreq * 2) / 1000000) - 1; // 1 us tick
}
TimMasterHandle.Init.ClockDivision = 0;
TimMasterHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
#if !TARGET_STM32L1
TimMasterHandle.Init.RepetitionCounter = 0;
#endif
#ifdef TIM_AUTORELOAD_PRELOAD_DISABLE
TimMasterHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#endif
HAL_TIM_OC_Init(&TimMasterHandle);
NVIC_SetVector(TIM_MST_IRQ, (uint32_t)timer_irq_handler);
NVIC_EnableIRQ(TIM_MST_IRQ);
// Channel 1 for mbed timeout
HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_1);
// Freeze timer on stop/breakpoint
// Define the FREEZE_TIMER_ON_DEBUG macro in mbed_app.json for example
#if !defined(NDEBUG) && defined(FREEZE_TIMER_ON_DEBUG) && defined(TIM_MST_DBGMCU_FREEZE)
TIM_MST_DBGMCU_FREEZE;
#endif
__HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}
#endif // 16-bit/32-bit timer
void us_ticker_init(void)
{
// Timer is already initialized in HAL_InitTick()
__HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1);
HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_1);
}
uint32_t (us_ticker_read)()
{
/* Invoke the macro */
return us_ticker_read();
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
// NOTE: This function must be called with interrupts disabled to keep our
// timer interrupt setup atomic
// Set new output compare value
__HAL_TIM_SET_COMPARE(&TimMasterHandle, TIM_CHANNEL_1, (uint32_t)timestamp);
// Ensure the compare event starts clear
__HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1);
// Enable IT
__HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}
void us_ticker_fire_interrupt(void)
{
__HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1);
LL_TIM_GenerateEvent_CC1(TimMasterHandle.Instance);
__HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}
void us_ticker_disable_interrupt(void)
{
__HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}
/* NOTE: must be called with interrupts disabled! */
void us_ticker_clear_interrupt(void)
{
__HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1);
}
void save_timer_ctx(void)
{
timer_cnt_reg = __HAL_TIM_GET_COUNTER(&TimMasterHandle);
timer_ccr1_reg = __HAL_TIM_GET_COMPARE(&TimMasterHandle, TIM_CHANNEL_1);
timer_dier_reg = TIM_MST->DIER;
}
void restore_timer_ctx(void)
{
__HAL_TIM_SET_COUNTER(&TimMasterHandle, timer_cnt_reg);
__HAL_TIM_SET_COMPARE(&TimMasterHandle, TIM_CHANNEL_1, timer_ccr1_reg);
TIM_MST->DIER = timer_dier_reg;
}
void us_ticker_free(void)
{
HAL_TIM_OC_Stop(&TimMasterHandle, TIM_CHANNEL_1);
us_ticker_disable_interrupt();
}
#endif /* DEVICE_USTICKER */