mirror of https://github.com/ARMmbed/mbed-os.git
422 lines
12 KiB
C
422 lines
12 KiB
C
/* mbed Microcontroller Library
|
|
*******************************************************************************
|
|
* Copyright (c) 2015, STMicroelectronics
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*******************************************************************************
|
|
*/
|
|
#include "pwmout_api.h"
|
|
|
|
#if DEVICE_PWMOUT
|
|
|
|
#include "cmsis.h"
|
|
#include "pinmap.h"
|
|
#include "mbed_error.h"
|
|
#include "PeripheralPins.h"
|
|
#include "pwmout_device.h"
|
|
|
|
static TIM_HandleTypeDef TimHandle;
|
|
|
|
/* Convert STM32 Cube HAL channel to LL channel */
|
|
uint32_t TIM_ChannelConvert_HAL2LL(uint32_t channel, pwmout_t *obj)
|
|
{
|
|
#if !defined(PWMOUT_INVERTED_NOT_SUPPORTED)
|
|
if (obj->inverted) {
|
|
switch (channel) {
|
|
case TIM_CHANNEL_1 :
|
|
return LL_TIM_CHANNEL_CH1N;
|
|
case TIM_CHANNEL_2 :
|
|
return LL_TIM_CHANNEL_CH2N;
|
|
case TIM_CHANNEL_3 :
|
|
return LL_TIM_CHANNEL_CH3N;
|
|
#if defined(LL_TIM_CHANNEL_CH4N)
|
|
case TIM_CHANNEL_4 :
|
|
return LL_TIM_CHANNEL_CH4N;
|
|
#endif
|
|
default : /* Optional */
|
|
return 0;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
switch (channel) {
|
|
case TIM_CHANNEL_1 :
|
|
return LL_TIM_CHANNEL_CH1;
|
|
case TIM_CHANNEL_2 :
|
|
return LL_TIM_CHANNEL_CH2;
|
|
case TIM_CHANNEL_3 :
|
|
return LL_TIM_CHANNEL_CH3;
|
|
case TIM_CHANNEL_4 :
|
|
return LL_TIM_CHANNEL_CH4;
|
|
default : /* Optional */
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if STATIC_PINMAP_READY
|
|
#define PWM_INIT_DIRECT pwmout_init_direct
|
|
void pwmout_init_direct(pwmout_t *obj, const PinMap *pinmap)
|
|
#else
|
|
#define PWM_INIT_DIRECT _pwmout_init_direct
|
|
static void _pwmout_init_direct(pwmout_t *obj, const PinMap *pinmap)
|
|
#endif
|
|
{
|
|
// Get the peripheral name from the pin and assign it to the object
|
|
obj->pwm = (PWMName)pinmap->peripheral;
|
|
MBED_ASSERT(obj->pwm != (PWMName)NC);
|
|
|
|
// Get the functions (timer channel, (non)inverted) from the pin and assign it to the object
|
|
uint32_t function = (uint32_t)pinmap->function;
|
|
MBED_ASSERT(function != (uint32_t)NC);
|
|
obj->channel = STM_PIN_CHANNEL(function);
|
|
obj->inverted = STM_PIN_INVERTED(function);
|
|
|
|
// Enable TIM clock
|
|
#if defined(TIM1_BASE)
|
|
if (obj->pwm == PWM_1) {
|
|
__HAL_RCC_TIM1_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM2_BASE)
|
|
if (obj->pwm == PWM_2) {
|
|
__HAL_RCC_TIM2_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM3_BASE)
|
|
if (obj->pwm == PWM_3) {
|
|
__HAL_RCC_TIM3_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM4_BASE)
|
|
if (obj->pwm == PWM_4) {
|
|
__HAL_RCC_TIM4_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM5_BASE)
|
|
if (obj->pwm == PWM_5) {
|
|
__HAL_RCC_TIM5_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM8_BASE)
|
|
if (obj->pwm == PWM_8) {
|
|
__HAL_RCC_TIM8_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM9_BASE)
|
|
if (obj->pwm == PWM_9) {
|
|
__HAL_RCC_TIM9_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM10_BASE)
|
|
if (obj->pwm == PWM_10) {
|
|
__HAL_RCC_TIM10_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM11_BASE)
|
|
if (obj->pwm == PWM_11) {
|
|
__HAL_RCC_TIM11_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM12_BASE)
|
|
if (obj->pwm == PWM_12) {
|
|
__HAL_RCC_TIM12_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM13_BASE)
|
|
if (obj->pwm == PWM_13) {
|
|
__HAL_RCC_TIM13_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM14_BASE)
|
|
if (obj->pwm == PWM_14) {
|
|
__HAL_RCC_TIM14_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM15_BASE)
|
|
if (obj->pwm == PWM_15) {
|
|
__HAL_RCC_TIM15_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM16_BASE)
|
|
if (obj->pwm == PWM_16) {
|
|
__HAL_RCC_TIM16_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM17_BASE)
|
|
if (obj->pwm == PWM_17) {
|
|
__HAL_RCC_TIM17_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM18_BASE)
|
|
if (obj->pwm == PWM_18) {
|
|
__HAL_RCC_TIM18_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM19_BASE)
|
|
if (obj->pwm == PWM_19) {
|
|
__HAL_RCC_TIM19_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM20_BASE)
|
|
if (obj->pwm == PWM_20) {
|
|
__HAL_RCC_TIM20_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM21_BASE)
|
|
if (obj->pwm == PWM_21) {
|
|
__HAL_RCC_TIM21_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#if defined(TIM22_BASE)
|
|
if (obj->pwm == PWM_22) {
|
|
__HAL_RCC_TIM22_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
// Configure GPIO
|
|
pin_function(pinmap->pin, pinmap->function);
|
|
pin_mode(pinmap->pin, PullNone);
|
|
|
|
obj->pin = pinmap->pin;
|
|
obj->period = 0;
|
|
obj->pulse = 0;
|
|
obj->prescaler = 1;
|
|
|
|
pwmout_period_us(obj, 20000); // 20 ms per default
|
|
}
|
|
|
|
void pwmout_init(pwmout_t *obj, PinName pin)
|
|
{
|
|
int peripheral = (int)pinmap_peripheral(pin, PinMap_PWM);
|
|
int function = (int)pinmap_find_function(pin, PinMap_PWM);
|
|
|
|
const PinMap static_pinmap = {pin, peripheral, function};
|
|
|
|
PWM_INIT_DIRECT(obj, &static_pinmap);
|
|
}
|
|
|
|
void pwmout_free(pwmout_t *obj)
|
|
{
|
|
// Configure GPIO
|
|
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
|
|
}
|
|
|
|
void pwmout_write(pwmout_t *obj, float value)
|
|
{
|
|
TIM_OC_InitTypeDef sConfig;
|
|
int channel = 0;
|
|
|
|
TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
|
|
|
|
if (value < (float)0.0) {
|
|
value = 0.0;
|
|
} else if (value > (float)1.0) {
|
|
value = 1.0;
|
|
}
|
|
|
|
obj->pulse = (uint32_t)((float)obj->period * value + 0.5);
|
|
|
|
// Configure channels
|
|
sConfig.OCMode = TIM_OCMODE_PWM1;
|
|
sConfig.Pulse = obj->pulse / obj->prescaler;
|
|
sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
|
|
sConfig.OCFastMode = TIM_OCFAST_DISABLE;
|
|
#if defined(TIM_OCIDLESTATE_RESET)
|
|
sConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
|
|
#endif
|
|
#if defined(TIM_OCNIDLESTATE_RESET)
|
|
sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
|
|
sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
|
#endif
|
|
|
|
switch (obj->channel) {
|
|
case 1:
|
|
channel = TIM_CHANNEL_1;
|
|
break;
|
|
case 2:
|
|
channel = TIM_CHANNEL_2;
|
|
break;
|
|
case 3:
|
|
channel = TIM_CHANNEL_3;
|
|
break;
|
|
case 4:
|
|
channel = TIM_CHANNEL_4;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (LL_TIM_CC_IsEnabledChannel(TimHandle.Instance, TIM_ChannelConvert_HAL2LL(channel, obj)) == 0) {
|
|
// If channel is not enabled, proceed to channel configuration
|
|
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) {
|
|
error("Cannot initialize PWM\n");
|
|
}
|
|
} else {
|
|
// If channel already enabled, only update compare value to avoid glitch
|
|
__HAL_TIM_SET_COMPARE(&TimHandle, channel, sConfig.Pulse);
|
|
return;
|
|
}
|
|
|
|
#if !defined(PWMOUT_INVERTED_NOT_SUPPORTED)
|
|
if (obj->inverted) {
|
|
HAL_TIMEx_PWMN_Start(&TimHandle, channel);
|
|
} else
|
|
#endif
|
|
{
|
|
HAL_TIM_PWM_Start(&TimHandle, channel);
|
|
}
|
|
}
|
|
|
|
float pwmout_read(pwmout_t *obj)
|
|
{
|
|
float value = 0;
|
|
if (obj->period > 0) {
|
|
value = (float)(obj->pulse) / (float)(obj->period);
|
|
}
|
|
return ((value > (float)1.0) ? (float)(1.0) : (value));
|
|
}
|
|
|
|
void pwmout_period(pwmout_t *obj, float seconds)
|
|
{
|
|
pwmout_period_us(obj, seconds * 1000000.0f);
|
|
}
|
|
|
|
void pwmout_period_ms(pwmout_t *obj, int ms)
|
|
{
|
|
pwmout_period_us(obj, ms * 1000);
|
|
}
|
|
|
|
void pwmout_period_us(pwmout_t *obj, int us)
|
|
{
|
|
TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
|
uint32_t PclkFreq = 0;
|
|
uint32_t APBxCLKDivider = RCC_HCLK_DIV1;
|
|
float dc = pwmout_read(obj);
|
|
uint8_t i = 0;
|
|
|
|
__HAL_TIM_DISABLE(&TimHandle);
|
|
|
|
// Get clock configuration
|
|
// Note: PclkFreq contains here the Latency (not used after)
|
|
HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);
|
|
|
|
/* Parse the pwm / apb mapping table to find the right entry */
|
|
while (pwm_apb_map_table[i].pwm != obj->pwm) {
|
|
i++;
|
|
}
|
|
|
|
if (pwm_apb_map_table[i].pwm == 0) {
|
|
error("Unknown PWM instance");
|
|
}
|
|
|
|
if (pwm_apb_map_table[i].pwmoutApb == PWMOUT_ON_APB1) {
|
|
PclkFreq = HAL_RCC_GetPCLK1Freq();
|
|
APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
|
|
} else {
|
|
#if !defined(PWMOUT_APB2_NOT_SUPPORTED)
|
|
PclkFreq = HAL_RCC_GetPCLK2Freq();
|
|
APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
|
|
#endif
|
|
}
|
|
|
|
|
|
/* By default use, 1us as SW pre-scaler */
|
|
obj->prescaler = 1;
|
|
// TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
|
|
if (APBxCLKDivider == RCC_HCLK_DIV1) {
|
|
TimHandle.Init.Prescaler = (((PclkFreq) / 1000000)) - 1; // 1 us tick
|
|
} else {
|
|
TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000)) - 1; // 1 us tick
|
|
}
|
|
TimHandle.Init.Period = (us - 1);
|
|
|
|
/* In case period or pre-scalers are out of range, loop-in to get valid values */
|
|
while ((TimHandle.Init.Period > 0xFFFF) || (TimHandle.Init.Prescaler > 0xFFFF)) {
|
|
obj->prescaler = obj->prescaler * 2;
|
|
if (APBxCLKDivider == RCC_HCLK_DIV1) {
|
|
TimHandle.Init.Prescaler = (((PclkFreq) / 1000000) * obj->prescaler) - 1;
|
|
} else {
|
|
TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000) * obj->prescaler) - 1;
|
|
}
|
|
TimHandle.Init.Period = (us - 1) / obj->prescaler;
|
|
/* Period decreases and prescaler increases over loops, so check for
|
|
* possible out of range cases */
|
|
if ((TimHandle.Init.Period < 0xFFFF) && (TimHandle.Init.Prescaler > 0xFFFF)) {
|
|
error("Cannot initialize PWM\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
TimHandle.Init.ClockDivision = 0;
|
|
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
|
|
if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
|
|
error("Cannot initialize PWM\n");
|
|
}
|
|
|
|
// Save for future use
|
|
obj->period = us;
|
|
|
|
// Set duty cycle again
|
|
pwmout_write(obj, dc);
|
|
|
|
__HAL_TIM_ENABLE(&TimHandle);
|
|
}
|
|
|
|
int pwmout_read_period_us(pwmout_t *obj)
|
|
{
|
|
return obj->period;
|
|
}
|
|
|
|
void pwmout_pulsewidth(pwmout_t *obj, float seconds)
|
|
{
|
|
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
|
|
}
|
|
|
|
void pwmout_pulsewidth_ms(pwmout_t *obj, int ms)
|
|
{
|
|
pwmout_pulsewidth_us(obj, ms * 1000);
|
|
}
|
|
|
|
void pwmout_pulsewidth_us(pwmout_t *obj, int us)
|
|
{
|
|
float value = (float)us / (float)obj->period;
|
|
pwmout_write(obj, value);
|
|
}
|
|
|
|
int pwmout_read_pulsewidth_us(pwmout_t *obj)
|
|
{
|
|
float pwm_duty_cycle = pwmout_read(obj);
|
|
return (int)(pwm_duty_cycle * (float)obj->period);
|
|
}
|
|
|
|
const PinMap *pwmout_pinmap()
|
|
{
|
|
return PinMap_PWM;
|
|
}
|
|
|
|
#endif
|