mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM4G9/rtc_api.c

241 lines
8.3 KiB
C

/* mbed Microcontroller Library
* (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2019 All rights reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rtc_api.h"
#include "mbed_mktime.h"
#define RTC_24_HOUR_MODE ((uint8_t)0x01)
#define PAGER_PAGE_ONE ((uint8_t)0x01)
#define PAGER_PAGE_ZERO ((uint8_t)0xEE)
#define RTC_CLK_ENABLE ((uint8_t)0x08)
#define RTC_CLK_DISABLE ((uint8_t)0xE7)
#define RTCRESTR_RSTTMR_MASK ((uint8_t)0x20)
#define RTCRESTR_RSTTMR_R_RUN ((uint8_t)0x20)
#define CGWUPLCR_WUPTL_HIGH_MASK ((uint32_t)0x07FFF000)
#define CGWUPLCR_WULEF_MASK ((uint32_t)0x00000002)
#define CGWUPLCR_WULEF_R_DONE ((uint32_t)0x00000000)
#define CGWUPLCR_WULON_W_ENABLE ((uint32_t)0x00000001)
#define RLMLOSCCR_XTEN_RW_ENABLE ((uint32_t)0x00000003)
#define ELOSC_CFG_WARM_UP_TIME ((uint64_t)(5000))
#define ELOSC_CFG_CLOCK ((uint64_t)(32768))
#define HEX2DEC(val) ((val >> 4U) * 10U + val % 16U) // Hex to Dec conversion macro
#define DEC2HEX(val) ((val / 10U) * 16U + val % 10U) // Dec to Hex conversion macro
static int rtc_inited = 0;
static int diff_year = 100; //our RTC register only support 2000~2099
static void external_losc_enable(void);
void rtc_init(void)
{
if (!rtc_inited) {
external_losc_enable(); // Enable low-speed oscillator
TSB_RTC->PAGER = 0x00; // Disable clock and alarm
while ((TSB_RTC->RESTR & RTCRESTR_RSTTMR_MASK) == RTCRESTR_RSTTMR_R_RUN) {
// Reset RTC sec counter
}
TSB_RTC->RESTR = 0xE7;
while ((TSB_RTC->RESTR & RTCRESTR_RSTTMR_MASK) == RTCRESTR_RSTTMR_R_RUN) {
// Reset RTC sec counter
}
TSB_RTC->PAGER |= PAGER_PAGE_ONE;
TSB_RTC->YEARR = 0x03; // Set leap year state
TSB_RTC->MONTHR = RTC_24_HOUR_MODE; // Set hour mode
TSB_RTC->PAGER &= PAGER_PAGE_ZERO; // Set hour mode
TSB_RTC->YEARR = 0x01; // Set year value
TSB_RTC->MONTHR = (uint8_t)0x01; // Set month value
TSB_RTC->DATER = (uint8_t)0x01; // Set date value
TSB_RTC->DAYR = (uint8_t)0x0; // Set day value
TSB_RTC->HOURR = (uint8_t)0x01; // Set hour value
TSB_RTC->MINR = (uint8_t)0x02; // Set minute value
TSB_RTC->SECR = (uint8_t)0x22; // Set second value
TSB_RTC->PAGER |= RTC_CLK_ENABLE; // Enable Clock
rtc_inited = 1; // Enable RTC initialzed status
}
}
void rtc_free(void)
{
rtc_inited = 0; // Set status of RTC peripheral driver as DISABLE
}
int rtc_isenabled(void)
{
return rtc_inited; // Return status of RTC peripheral driver
}
time_t rtc_read(void)
{
if (!rtc_inited) {
// Return invalid time for now!
return 0;
}
struct tm timeinfo;
uint8_t read_1 = 0U;
uint8_t read_2 = 0U;
timeinfo.tm_isdst = 0; //no summer time
TSB_RTC->PAGER &= PAGER_PAGE_ZERO;
read_1 = TSB_RTC->SECR; // Get sec value
timeinfo.tm_sec = HEX2DEC(read_1);
// Get minute value
do {
read_1 = TSB_RTC->MINR;
read_2 = TSB_RTC->MINR;
} while (read_1 != read_2);
timeinfo.tm_min = HEX2DEC(read_1);
// Get hour value
do {
read_1 = TSB_RTC->HOURR;
read_2 = TSB_RTC->HOURR;
} while (read_1 != read_2);
timeinfo.tm_hour = HEX2DEC(read_1);
// Get Month date value
do {
read_1 = TSB_RTC->DATER;
read_2 = TSB_RTC->DATER;
} while (read_1 != read_2);
timeinfo.tm_mday = HEX2DEC(read_1);
// Get Month value
do {
read_1 = TSB_RTC->MONTHR;
read_2 = TSB_RTC->MONTHR;
} while (read_1 != read_2);
timeinfo.tm_mon = HEX2DEC(read_1)-1;
// Get weekday value
do {
read_1 = TSB_RTC->DAYR;
read_2 = TSB_RTC->DAYR;
} while (read_1 != read_2);
timeinfo.tm_wday = HEX2DEC(read_1);
// Get year value
do {
read_1 = TSB_RTC->YEARR;
read_2 = TSB_RTC->YEARR;
} while (read_1 != read_2);
timeinfo.tm_year = (HEX2DEC(read_1)+ diff_year);
time_t t;
if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
return 0;
}
return t;
}
void rtc_write(time_t t)
{
if (!rtc_inited) {
// Initialize the RTC as not yet initialized
rtc_init();
}
struct tm timeinfo;
if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
return;
}
diff_year = timeinfo.tm_year - (timeinfo.tm_year % 100);
TSB_RTC->PAGER &= RTC_CLK_DISABLE; // Disable clock
// Check current year is leap year or not
if (((timeinfo.tm_year % 4) == 0 && (timeinfo.tm_year % 100) != 0) ||
(timeinfo.tm_year % 400) == 0) {
TSB_RTC->PAGER |= PAGER_PAGE_ONE; // Current year is a leap year
TSB_RTC->YEARR = 0x00;
} else if ((timeinfo.tm_year % 4) == 1) {
TSB_RTC->PAGER |= PAGER_PAGE_ONE; // Current year is the year following a leap year
TSB_RTC->YEARR = 0x01;
} else if ((timeinfo.tm_year % 4) == 2) {
TSB_RTC->PAGER |= PAGER_PAGE_ONE; // Current year is two years after a leap year
TSB_RTC->YEARR = 0x02;
} else {
TSB_RTC->PAGER |= PAGER_PAGE_ONE; // Current year is three years after a leap year
TSB_RTC->YEARR = 0x03;
}
TSB_RTC->PAGER &= PAGER_PAGE_ZERO; // Select PAGE 0
TSB_RTC->YEARR = (uint8_t)DEC2HEX((timeinfo.tm_year - diff_year)); // Set year value
// Set month value, tm_mon=0 means Jan while 1 is Jan
TSB_RTC->MONTHR = (uint8_t)DEC2HEX((timeinfo.tm_mon+1));
TSB_RTC->DATER = (uint8_t)DEC2HEX(timeinfo.tm_mday); // Set date value
TSB_RTC->DAYR = (uint8_t)(timeinfo.tm_wday); // Set week day value
TSB_RTC->HOURR = (uint8_t)DEC2HEX(timeinfo.tm_hour); // Set hour value
TSB_RTC->MINR = (uint8_t)DEC2HEX(timeinfo.tm_min); // Set minute value
TSB_RTC->SECR = (uint8_t)DEC2HEX(timeinfo.tm_sec); // Set second value
// Setting Wait
// When stop mode is selected, CaseA or CaseB is need.
// CaseA: Wait for RTC 1Hz interrupt.
// CaseB: Check the clock register setting.
{
uint8_t flag = 1;
time_t time_read = {0};
while(flag) {
time_read = rtc_read();
if( time_read == t) { // Wait for setting successfully
flag = 0;
}
}
}
TSB_RTC->PAGER |= RTC_CLK_ENABLE; // Enable Clock
}
static void external_losc_enable(void)
{
uint32_t work;
// [CGWUPLCR]<WUPTL> :Warm up time
//--------------------------------------
// "1"counter (s) = 1 / ELOSC
// "1"counter (us) = (10^6) / ELOSC
// "x"counter (us) = time
//--------------------------------------
// x : time = 1 : (10^6) / ELOSC
//--------------------------------------
{
uint64_t x = (uint64_t)((uint64_t)(ELOSC_CFG_WARM_UP_TIME) * (uint64_t)(ELOSC_CFG_CLOCK));
x = (uint64_t)(x / (uint64_t)(1000000));
if (x > (uint64_t)(0x7FFFF)) {
/* invalid value */
}
work = (uint32_t)x;
}
work &= (uint32_t)(0xFFFFFFF0);
work <<= 8;
TSB_CG->WUPLCR = work;
// [RLMLOSCCR]<XTEN> :LOSC Enable
TSB_RLM->LOSCCR = RLMLOSCCR_XTEN_RW_ENABLE;
// [CGWUPLCR]<WULON> :Enable
work = (uint32_t)(TSB_CG->WUPLCR & CGWUPLCR_WUPTL_HIGH_MASK);
TSB_CG->WUPLCR = (uint32_t)(work | CGWUPLCR_WULON_W_ENABLE);
// [CGWUPLCR]<WULEF> :Read(wait for warm-up)
while ((TSB_CG->WUPLCR & CGWUPLCR_WULEF_MASK) != CGWUPLCR_WULEF_R_DONE) {
// no processing
}
}