mbed-os/targets/TARGET_NORDIC/TARGET_MCU_NRF51822/pwmout_api.c

386 lines
12 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2013 Nordic Semiconductor
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#define NO_PWMS 3
#define TIMER_PRECISION 4 //4us ticks
#define TIMER_PRESCALER 6 //4us ticks = 16Mhz/(2**6)
static const PinMap PinMap_PWM[] = {
{P0_0, PWM_1, 1},
{P0_1, PWM_1, 1},
{P0_2, PWM_1, 1},
{P0_3, PWM_1, 1},
{P0_4, PWM_1, 1},
{P0_5, PWM_1, 1},
{P0_6, PWM_1, 1},
{P0_7, PWM_1, 1},
{P0_8, PWM_1, 1},
{P0_9, PWM_1, 1},
{P0_10, PWM_1, 1},
{P0_11, PWM_1, 1},
{P0_12, PWM_1, 1},
{P0_13, PWM_1, 1},
{P0_14, PWM_1, 1},
{P0_15, PWM_1, 1},
{P0_16, PWM_1, 1},
{P0_17, PWM_1, 1},
{P0_18, PWM_1, 1},
{P0_19, PWM_1, 1},
{P0_20, PWM_1, 1},
{P0_21, PWM_1, 1},
{P0_22, PWM_1, 1},
{P0_23, PWM_1, 1},
{P0_24, PWM_1, 1},
{P0_25, PWM_1, 1},
{P0_28, PWM_1, 1},
{P0_29, PWM_1, 1},
{P0_30, PWM_1, 1},
{NC, NC, 0}
};
static NRF_TIMER_Type *Timers[1] = {
NRF_TIMER2
};
uint16_t PERIOD = 20000 / TIMER_PRECISION; //20ms
uint8_t PWM_taken[NO_PWMS] = {0, 0, 0};
uint16_t PULSE_WIDTH[NO_PWMS] = {1, 1, 1}; //set to 1 instead of 0
uint16_t ACTUAL_PULSE[NO_PWMS] = {0, 0, 0};
/** @brief Function for handling timer 2 peripheral interrupts.
*/
#ifdef __cplusplus
extern "C" {
#endif
void TIMER2_IRQHandler(void)
{
NRF_TIMER2->EVENTS_COMPARE[3] = 0;
NRF_TIMER2->CC[3] = PERIOD;
if (PWM_taken[0]) {
NRF_TIMER2->CC[0] = PULSE_WIDTH[0];
}
if (PWM_taken[1]) {
NRF_TIMER2->CC[1] = PULSE_WIDTH[1];
}
if (PWM_taken[2]) {
NRF_TIMER2->CC[2] = PULSE_WIDTH[2];
}
NRF_TIMER2->TASKS_START = 1;
}
#ifdef __cplusplus
}
#endif
/** @brief Function for initializing the Timer peripherals.
*/
void timer_init(uint8_t pwmChoice)
{
NRF_TIMER_Type *timer = Timers[0];
timer->TASKS_STOP = 0;
if (pwmChoice == 0) {
timer->POWER = 0;
timer->POWER = 1;
timer->MODE = TIMER_MODE_MODE_Timer;
timer->BITMODE = TIMER_BITMODE_BITMODE_16Bit << TIMER_BITMODE_BITMODE_Pos;
timer->PRESCALER = TIMER_PRESCALER;
timer->CC[3] = PERIOD;
}
timer->CC[pwmChoice] = PULSE_WIDTH[pwmChoice];
//high priority application interrupt
NVIC_SetPriority(TIMER2_IRQn, 1);
NVIC_EnableIRQ(TIMER2_IRQn);
timer->TASKS_START = 0x01;
}
static void timer_free()
{
NRF_TIMER_Type *timer = Timers[0];
for(uint8_t i = 1; i < NO_PWMS; i++){
if(PWM_taken[i]){
break;
}
if((i == NO_PWMS - 1) && (!PWM_taken[i]))
timer->TASKS_STOP = 0x01;
}
}
/** @brief Function for initializing the GPIO Tasks/Events peripheral.
*/
void gpiote_init(PinName pin, uint8_t channel_number)
{
// Connect GPIO input buffers and configure PWM_OUTPUT_PIN_NUMBER as an output.
NRF_GPIO->PIN_CNF[pin] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
| (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
| (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
| (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
| (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
NRF_GPIO->OUTCLR = (1UL << pin);
// Configure GPIOTE channel 0 to toggle the PWM pin state
// @note Only one GPIOTE task can be connected to an output pin.
/* Configure channel to Pin31, not connected to the pin, and configure as a tasks that will set it to proper level */
NRF_GPIOTE->CONFIG[channel_number] = (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
(31UL << GPIOTE_CONFIG_PSEL_Pos) |
(GPIOTE_CONFIG_POLARITY_HiToLo << GPIOTE_CONFIG_POLARITY_Pos);
/* Three NOPs are required to make sure configuration is written before setting tasks or getting events */
__NOP();
__NOP();
__NOP();
/* Launch the task to take the GPIOTE channel output to the desired level */
NRF_GPIOTE->TASKS_OUT[channel_number] = 1;
/* Finally configure the channel as the caller expects. If OUTINIT works, the channel is configured properly.
If it does not, the channel output inheritance sets the proper level. */
NRF_GPIOTE->CONFIG[channel_number] = (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
((uint32_t)pin << GPIOTE_CONFIG_PSEL_Pos) |
((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos) |
((uint32_t)GPIOTE_CONFIG_OUTINIT_Low << GPIOTE_CONFIG_OUTINIT_Pos); // ((uint32_t)GPIOTE_CONFIG_OUTINIT_High <<
// GPIOTE_CONFIG_OUTINIT_Pos);//
/* Three NOPs are required to make sure configuration is written before setting tasks or getting events */
__NOP();
__NOP();
__NOP();
}
static void gpiote_free(PinName pin,uint8_t channel_number)
{
NRF_GPIOTE->TASKS_OUT[channel_number] = 0;
NRF_GPIOTE->CONFIG[channel_number] = 0;
NRF_GPIO->PIN_CNF[pin] = (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos);
}
/** @brief Function for initializing the Programmable Peripheral Interconnect peripheral.
*/
static void ppi_init(uint8_t pwm)
{
//using ppi channels 0-7 (only 0-7 are available)
uint8_t channel_number = 2 * pwm;
NRF_TIMER_Type *timer = Timers[0];
// Configure PPI channel 0 to toggle ADVERTISING_LED_PIN_NO on every TIMER1 COMPARE[0] match
NRF_PPI->CH[channel_number].TEP = (uint32_t)&NRF_GPIOTE->TASKS_OUT[pwm];
NRF_PPI->CH[channel_number + 1].TEP = (uint32_t)&NRF_GPIOTE->TASKS_OUT[pwm];
NRF_PPI->CH[channel_number].EEP = (uint32_t)&timer->EVENTS_COMPARE[pwm];
NRF_PPI->CH[channel_number + 1].EEP = (uint32_t)&timer->EVENTS_COMPARE[3];
// Enable PPI channels.
NRF_PPI->CHEN |= (1 << channel_number) |
(1 << (channel_number + 1));
}
static void ppi_free(uint8_t pwm)
{
//using ppi channels 0-7 (only 0-7 are available)
uint8_t channel_number = 2*pwm;
// Disable PPI channels.
NRF_PPI->CHEN &= (~(1 << channel_number))
& (~(1 << (channel_number+1)));
}
void setModulation(pwmout_t *obj, uint8_t toggle, uint8_t high)
{
if (high) {
NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_OUTINIT_High << GPIOTE_CONFIG_OUTINIT_Pos);
if (toggle) {
NRF_GPIOTE->CONFIG[obj->pwm] |= (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
} else {
NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_POLARITY_LoToHi << GPIOTE_CONFIG_POLARITY_Pos);
}
} else {
NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_OUTINIT_High << GPIOTE_CONFIG_OUTINIT_Pos);
if (toggle) {
NRF_GPIOTE->CONFIG[obj->pwm] |= (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
} else {
NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_POLARITY_HiToLo << GPIOTE_CONFIG_POLARITY_Pos);
}
}
}
void pwmout_init(pwmout_t *obj, PinName pin)
{
// determine the channel
uint8_t pwmOutSuccess = 0;
PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT(pwm != (PWMName)NC);
if (PWM_taken[(uint8_t)pwm]) {
for (uint8_t i = 1; !pwmOutSuccess && (i<NO_PWMS); i++) {
if (!PWM_taken[i]) {
pwm = (PWMName)i;
PWM_taken[i] = 1;
pwmOutSuccess = 1;
}
}
} else {
pwmOutSuccess = 1;
PWM_taken[(uint8_t)pwm] = 1;
}
if (!pwmOutSuccess) {
error("PwmOut pin mapping failed. All available PWM channels are in use.");
}
obj->pwm = pwm;
obj->pin = pin;
gpiote_init(pin, (uint8_t)pwm);
ppi_init((uint8_t)pwm);
if (pwm == 0) {
NRF_POWER->TASKS_CONSTLAT = 1;
}
timer_init((uint8_t)pwm);
//default to 20ms: standard for servos, and fine for e.g. brightness control
pwmout_period_ms(obj, 20);
pwmout_write (obj, 0);
}
void pwmout_free(pwmout_t* obj) {
MBED_ASSERT(obj->pwm != (PWMName)NC);
pwmout_write(obj, 0);
PWM_taken[obj->pwm] = 0;
timer_free();
ppi_free(obj->pwm);
gpiote_free(obj->pin,obj->pwm);
}
void pwmout_write(pwmout_t *obj, float value)
{
uint16_t oldPulseWidth;
NRF_TIMER2->EVENTS_COMPARE[3] = 0;
NRF_TIMER2->TASKS_STOP = 1;
if (value < 0.0f) {
value = 0.0;
} else if (value > 1.0f) {
value = 1.0;
}
oldPulseWidth = ACTUAL_PULSE[obj->pwm];
ACTUAL_PULSE[obj->pwm] = PULSE_WIDTH[obj->pwm] = value * PERIOD;
if (PULSE_WIDTH[obj->pwm] == 0) {
PULSE_WIDTH[obj->pwm] = 1;
setModulation(obj, 0, 0);
} else if (PULSE_WIDTH[obj->pwm] == PERIOD) {
PULSE_WIDTH[obj->pwm] = PERIOD - 1;
setModulation(obj, 0, 1);
} else if ((oldPulseWidth == 0) || (oldPulseWidth == PERIOD)) {
setModulation(obj, 1, oldPulseWidth == PERIOD);
}
NRF_TIMER2->INTENSET = TIMER_INTENSET_COMPARE3_Msk;
NRF_TIMER2->SHORTS = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
NRF_TIMER2->TASKS_START = 1;
}
float pwmout_read(pwmout_t *obj)
{
return ((float)PULSE_WIDTH[obj->pwm] / (float)PERIOD);
}
void pwmout_period(pwmout_t *obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t *obj, int ms)
{
pwmout_period_us(obj, ms * 1000);
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t *obj, int us)
{
uint32_t periodInTicks = us / TIMER_PRECISION;
NRF_TIMER2->EVENTS_COMPARE[3] = 0;
NRF_TIMER2->TASKS_STOP = 1;
if (periodInTicks>((1 << 16) - 1)) {
PERIOD = (1 << 16) - 1; //131ms
} else if (periodInTicks<5) {
PERIOD = 5;
} else {
PERIOD = periodInTicks;
}
NRF_TIMER2->INTENSET = TIMER_INTENSET_COMPARE3_Msk;
NRF_TIMER2->SHORTS = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
NRF_TIMER2->TASKS_START = 1;
}
void pwmout_pulsewidth(pwmout_t *obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t *obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t *obj, int us)
{
uint32_t pulseInTicks = us / TIMER_PRECISION;
uint16_t oldPulseWidth = ACTUAL_PULSE[obj->pwm];
NRF_TIMER2->EVENTS_COMPARE[3] = 0;
NRF_TIMER2->TASKS_STOP = 1;
ACTUAL_PULSE[obj->pwm] = PULSE_WIDTH[obj->pwm] = pulseInTicks;
if (PULSE_WIDTH[obj->pwm] == 0) {
PULSE_WIDTH[obj->pwm] = 1;
setModulation(obj, 0, 0);
} else if (PULSE_WIDTH[obj->pwm] == PERIOD) {
PULSE_WIDTH[obj->pwm] = PERIOD - 1;
setModulation(obj, 0, 1);
} else if ((oldPulseWidth == 0) || (oldPulseWidth == PERIOD)) {
setModulation(obj, 1, oldPulseWidth == PERIOD);
}
NRF_TIMER2->INTENSET = TIMER_INTENSET_COMPARE3_Msk;
NRF_TIMER2->SHORTS = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
NRF_TIMER2->TASKS_START = 1;
}
const PinMap *pwmout_pinmap()
{
return PinMap_PWM;
}