mbed-os/targets/TARGET_Realtek/TARGET_AMEBA/analogout_api.c

190 lines
6.5 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2013-2016 Realtek Semiconductor Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "objects.h"
#include "analogout_api.h"
#if CONFIG_DAC_EN
#include "cmsis.h"
#include "pinmap.h"
#include <string.h>
#define DAC_POSITIVE_FULL_SCALE 0x7E0
#define DAC_NEGATIVE_FULL_SCALE 0x820
/** \brief analogout_init:\n
* to initialize DAC
*
* This function is mainly to initialize a DAC channel.
* \para dac_t *: obj
* \para PinName: pin
*/
void analogout_init(dac_t *obj, PinName pin)
{
uint32_t dac_idx;
uint32_t DacTemp;
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)&(obj->DACpara);
dac_idx = pin & 0x0F;
/* Assign dac index */
pHalDacInitData->DACIdx = dac_idx;
pHalDacInitData->DACEn = DAC_DISABLE;
pHalDacInitData->DACDataRate = DAC_DATA_RATE_250K;
pHalDacInitData->DACEndian = DAC_DATA_ENDIAN_LITTLE;
pHalDacInitData->DACBurstSz = 10;
pHalDacInitData->DACDbgSel = DAC_DBG_SEL_DISABLE;
pHalDacInitData->DACDscDbgSel = DAC_DSC_DBG_SEL_DISABLE;
pHalDacInitData->DACBPDsc = DAC_BYPASS_DSC_SEL_DISABLE;
pHalDacInitData->DACDeltaSig = 0;
pHalDacInitData->DACAnaCtrl0 = 0;
pHalDacInitData->DACAnaCtrl1 = 0;
pHalDacInitData->DACIntrMSK = DAC_FEATURE_DISABLED;
/* DAC Function and Clock Enable*/
HalDACPinMuxInit(pHalDacInitData);
HalDACInit8195a(pHalDacInitData);
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC_INTR_CTRL,
(BIT_DAC_FIFO_FULL_EN |
BIT_DAC_FIFO_OVERFLOW_EN |
BIT_DAC_FIFO_STOP_EN |
BIT_DAC__WRITE_ERROR_EN |
BIT_DAC_DSC_OVERFLOW0_EN |
BIT_DAC_DSC_OVERFLOW1_EN));
DBG_DAC_INFO("INTR MSK:%x\n", HAL_DAC_READ32(pHalDacInitData->DACIdx,REG_DAC_INTR_CTRL));
DacTemp = HAL_DAC_READ32(pHalDacInitData->DACIdx, REG_DAC_ANAPAR_DA1);
DacTemp |= (BIT31);
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC_ANAPAR_DA1, DacTemp);
DBG_DAC_INFO("REG_DAC_ANAPAR_DA1:%08x\n",HAL_DAC_READ32(pHalDacInitData->DACIdx, REG_DAC_ANAPAR_DA1));
DacTemp = HAL_DAC_READ32(pHalDacInitData->DACIdx, REG_DAC_CTRL);
DacTemp |= BIT3;
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC_CTRL, DacTemp);
DBG_DAC_INFO("REG_DAC_CTRL:%08x\n",DacTemp);
pHalDacInitData->DACEn = DAC_ENABLE;
HalDACEnableRtl8195a(pHalDacInitData);
osDelay(6); //hardware needs some time to get ready
}
/** \brief analogout_free:\n
* to free DAC
*
* This function is mainly to free a DAC channel.
* \para dac_t *: obj
*/
void analogout_free(dac_t *obj)
{
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)&(obj->DACpara);
HalDACPinMuxDeInit(pHalDacInitData);
pHalDacInitData->DACEn = DAC_DISABLE;
HalDACEnableRtl8195a(pHalDacInitData);
}
/** \brief analogout_write:\n
* to execute analogout_write
*
* This function is mainly to execute analog output and the value is a ratio.
* The upper/lower bound of DAC register input value is defined by
* DAC_XXXXX_FULL_SCALE. The parameter "value" of this function should be
* transfered to register value.
*
* \para dac_t * : obj
* \para float : value
*/
void analogout_write(dac_t *obj, float value)
{
uint32_t dactemp;
uint16_t dacnegtemp;
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)&(obj->DACpara);
if (value < 0.0f) {
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, 0x00000000);
} else if (value > 1.0f) {
dactemp = (DAC_POSITIVE_FULL_SCALE<<16) | DAC_POSITIVE_FULL_SCALE;
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, dactemp);
} else {
if (value >= 0.5) {
dactemp = (uint32_t)((((value-0.5)/0.5) * (2^12)) * DAC_POSITIVE_FULL_SCALE);
dactemp = dactemp / (2^12);
dactemp = (dactemp<<16) | dactemp;
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, dactemp);
} else {
dacnegtemp = (DAC_NEGATIVE_FULL_SCALE & 0x7FF);
dacnegtemp = ((~dacnegtemp) + 1) & 0x7FF;
dactemp = (uint32_t)(((0.5-value)/0.5) * (2^12) * dacnegtemp);
dactemp = dactemp / (2^12);
dactemp = 0x1000 - dactemp; //change to 2's complement
dactemp = (dactemp<<16) | dactemp;
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, dactemp);
}
}
}
/** \brief analogout_write_u16:\n
* to execute analogout_write_u16
*
* The register value of DAC input is a format of 2's complement.
* The most maximum value of positive value drives DAC to output a voltage about 3.3V.
* The most mimimum value of negative value drives DAC to output a voltage about 0.
* And the middle value of 0x000 will drive DAC to output a voltage of half of max voltage.
*
* \para dac_t * : obj
* \para float : value
*/
void analogout_write_u16(dac_t *obj, uint16_t value)
{
uint32_t dactemp;
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)&(obj->DACpara);
/* To give a two point data */
dactemp = (value << 16) | value;
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, dactemp);
}
/** \brief analogout_read_u16:\n
* to read back analog output value in float format
*
* This function is NOT available in rtl8195a hardware design.
* It always returns a fixed value of 0.0;
* \para dac_t * : obj
*/
float analogout_read(dac_t *obj)
{
return (float)0.0;
}
/** \brief analogout_read_u16:\n
* to read back analog output register value
*
* This function is NOT available in rtl8195a hardware design.
* It always returns a fixed value of 0xFFFF;
* \para dac_t * : obj
*/
uint16_t analogout_read_u16(dac_t *obj)
{
return (uint16_t)0xFFFF;
}
#endif