mbed-os/targets/TARGET_NXP/TARGET_LPC43XX/pwmout_api.c

267 lines
10 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Ported to NXP LPC43XX by Micromint USA <support@micromint.com>
*/
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
// PWM implementation for the LPC43xx using State Configurable Timer (SCT)
// * PWM_0 to PWM_15 on mbed use CTOUT_0 to CTOUT_15 outputs on LPC43xx
// * Event 0 is PWM period, events 1 to PWM_EVENT_MAX are PWM channels
// * Default is unified 32-bit timer, but could be configured to use
// a 16-bit timer so a timer is available for other SCT functions
// configuration options
#define PWM_FREQ_BASE 1000000 // Base frequency 1 MHz = 1000000
#define PWM_MODE 1 // 0 = 32-bit, 1 = 16-bit low, 2 = 16-bit high
// macros
#define PWM_SETCOUNT(x) (x - 1) // set count value
#define PWM_GETCOUNT(x) (x + 1) // get count value
#if (PWM_MODE == 0) // unified 32-bit counter, events 1 to 15
#define PWM_EVENT_MAX (CONFIG_SCT_nEV - 1) // Max PWM channels
#define PWM_CONFIG SCT_CONFIG_32BIT_COUNTER // default config
#define PWM_CTRL &LPC_SCT->CTRL_U // control register
#define PWM_HALT SCT_CTRL_HALT_L // halt counter
#define PWM_CLEAR SCT_CTRL_CLRCTR_L // clock clear
#define PWM_PRE(x) SCT_CTRL_PRE_L(x) // clock prescale
#define PWM_EVT_MASK (1 << 12) // event control mask
#define PWM_LIMIT &LPC_SCT->LIMIT_L // limit register
#define PWM_MATCH(x) &LPC_SCT->MATCH[x].U // match register
#define PWM_MR(x) &LPC_SCT->MATCHREL[x].U // 32-bit match reload register
#elif (PWM_MODE == 1) // 16-bit low counter, events 1 to 7
#define PWM_EVENT_MAX (CONFIG_SCT_nEV/2 - 1) // Max PWM channels
#define PWM_CONFIG SCT_CONFIG_16BIT_COUNTER // default config
#define PWM_CTRL &LPC_SCT->CTRL_L // control register
#define PWM_HALT SCT_CTRL_HALT_L // halt counter
#define PWM_CLEAR SCT_CTRL_CLRCTR_L // clock clear
#define PWM_PRE(x) SCT_CTRL_PRE_L(x) // clock prescale
#define PWM_EVT_MASK (1 << 12) // event control mask
#define PWM_LIMIT &LPC_SCT->LIMIT_L // limit register
#define PWM_MATCH(x) &LPC_SCT->MATCH[x].L // match register
#define PWM_MR(x) &LPC_SCT->MATCHREL[x].L // 16-bit match reload register
#elif (PWM_MODE == 2) // 16-bit high counter, events 1 to 7
// [TODO] use events 8 to 15 on mode 2
#define PWM_EVENT_MAX (CONFIG_SCT_nEV/2 - 1) // Max PWM channels
#define PWM_CONFIG SCT_CONFIG_16BIT_COUNTER // default config
#define PWM_CTRL &LPC_SCT->CTRL_H // control register
#define PWM_HALT SCT_CTRL_HALT_L // halt counter
#define PWM_CLEAR SCT_CTRL_CLRCTR_L // clock clear
#define PWM_PRE(x) SCT_CTRL_PRE_L(x) // clock prescale
#define PWM_EVT_MASK ((1 << 4) | (1 << 12)) // event control mask
#define PWM_LIMIT &LPC_SCT->LIMIT_H // limit register
#define PWM_MATCH(x) &LPC_SCT->MATCH[x].H // match register
#define PWM_MR(x) &LPC_SCT->MATCHREL[x].H // 16-bit match reload register
#else
#error "PWM mode not implemented"
#endif
#define PWM_MR0 PWM_MR(0) // MR register 0 is for period
static uint8_t event = 0;
// PORT ID, PWM ID, Pin function
static const PinMap PinMap_PWM[] = {
{P1_1, PWM_7, (SCU_PINIO_FAST | 1)},
{P1_2, PWM_6, (SCU_PINIO_FAST | 1)},
{P1_3, PWM_8, (SCU_PINIO_FAST | 1)},
{P1_4, PWM_9, (SCU_PINIO_FAST | 1)},
{P1_5, PWM_10, (SCU_PINIO_FAST | 1)},
{P1_7, PWM_13, (SCU_PINIO_FAST | 2)},
{P1_8, PWM_12, (SCU_PINIO_FAST | 2)},
{P1_9, PWM_11, (SCU_PINIO_FAST | 2)},
{P1_10, PWM_14, (SCU_PINIO_FAST | 2)},
{P1_11, PWM_15, (SCU_PINIO_FAST | 2)},
{P2_7, PWM_1, (SCU_PINIO_FAST | 1)},
{P2_8, PWM_0, (SCU_PINIO_FAST | 1)},
{P2_9, PWM_3, (SCU_PINIO_FAST | 1)},
{P2_10, PWM_2, (SCU_PINIO_FAST | 1)},
{P2_11, PWM_5, (SCU_PINIO_FAST | 1)},
{P2_12, PWM_4, (SCU_PINIO_FAST | 1)},
{P4_1, PWM_1, (SCU_PINIO_FAST | 1)},
{P4_2, PWM_0, (SCU_PINIO_FAST | 1)},
{P4_3, PWM_3, (SCU_PINIO_FAST | 1)},
{P4_4, PWM_2, (SCU_PINIO_FAST | 1)},
{P4_5, PWM_5, (SCU_PINIO_FAST | 1)},
{P4_6, PWM_4, (SCU_PINIO_FAST | 1)},
{P6_5, PWM_6, (SCU_PINIO_FAST | 1)},
{P6_12, PWM_7, (SCU_PINIO_FAST | 1)},
{P7_0, PWM_14, (SCU_PINIO_FAST | 1)},
{P7_1, PWM_15, (SCU_PINIO_FAST | 1)},
{P7_4, PWM_13, (SCU_PINIO_FAST | 1)},
{P7_5, PWM_12, (SCU_PINIO_FAST | 1)},
{P7_6, PWM_11, (SCU_PINIO_FAST | 1)},
{P7_7, PWM_8, (SCU_PINIO_FAST | 1)},
{PA_4, PWM_9, (SCU_PINIO_FAST | 1)},
{PB_0, PWM_10, (SCU_PINIO_FAST | 1)},
{PB_1, PWM_6, (SCU_PINIO_FAST | 5)},
{PB_2, PWM_7, (SCU_PINIO_FAST | 5)},
{PB_3, PWM_8, (SCU_PINIO_FAST | 5)},
{PD_0, PWM_15, (SCU_PINIO_FAST | 1)},
{PD_2, PWM_7, (SCU_PINIO_FAST | 1)},
{PD_3, PWM_6, (SCU_PINIO_FAST | 1)},
{PD_4, PWM_8, (SCU_PINIO_FAST | 1)},
{PD_5, PWM_9, (SCU_PINIO_FAST | 1)},
{PD_6, PWM_10, (SCU_PINIO_FAST | 1)},
{PD_9, PWM_13, (SCU_PINIO_FAST | 1)},
{PD_11, PWM_14, (SCU_PINIO_FAST | 6)},
{PD_12, PWM_10, (SCU_PINIO_FAST | 6)},
{PD_13, PWM_13, (SCU_PINIO_FAST | 6)},
{PD_14, PWM_11, (SCU_PINIO_FAST | 6)},
{PD_15, PWM_8, (SCU_PINIO_FAST | 6)},
{PD_16, PWM_12, (SCU_PINIO_FAST | 6)},
{PE_5, PWM_3, (SCU_PINIO_FAST | 1)},
{PE_6, PWM_2, (SCU_PINIO_FAST | 1)},
{PE_7, PWM_5, (SCU_PINIO_FAST | 1)},
{PE_8, PWM_4, (SCU_PINIO_FAST | 1)},
{PE_11, PWM_12, (SCU_PINIO_FAST | 1)},
{PE_12, PWM_11, (SCU_PINIO_FAST | 1)},
{PE_13, PWM_14, (SCU_PINIO_FAST | 1)},
{PE_15, PWM_0, (SCU_PINIO_FAST | 1)},
{PF_9, PWM_1, (SCU_PINIO_FAST | 2)},
{NC, NC, 0}
};
static unsigned int pwm_clock_mhz;
static void _pwmout_dev_init() {
uint32_t i;
// set SCT clock and config
LPC_CCU1->CLKCCU[CLK_MX_SCT].CFG = (1 << 0); // enable SCT clock in CCU1
LPC_SCT->CONFIG |= PWM_CONFIG; // set config options
*PWM_CTRL |= PWM_HALT; // set HALT bit to stop counter
// clear counter and set prescaler for desired freq
*PWM_CTRL |= PWM_CLEAR | PWM_PRE(SystemCoreClock / PWM_FREQ_BASE - 1);
pwm_clock_mhz = PWM_FREQ_BASE / 1000000;
// configure SCT events
for (i = 0; i < PWM_EVENT_MAX; i++) {
*PWM_MATCH(i) = 0; // match register
*PWM_MR(i) = 0; // match reload register
LPC_SCT->EVENT[i].STATE = 0xFFFFFFFF; // event happens in all states
LPC_SCT->EVENT[i].CTRL = (i << 0) | PWM_EVT_MASK; // match condition only
}
*PWM_LIMIT = (1 << 0) ; // set event 0 as limit
// initialize period to 20ms: standard for servos, and fine for e.g. brightness control
*PWM_MR0 = PWM_SETCOUNT((uint32_t)(((20 * PWM_FREQ_BASE) / 1000000) * 1000));
// initialize SCT outputs
for (i = 0; i < CONFIG_SCT_nOU; i++) {
LPC_SCT->OUT[i].SET = (1 << 0); // event 0 will set SCTOUT_xx
LPC_SCT->OUT[i].CLR = 0; // set clear event when duty cycle
}
LPC_SCT->OUTPUT = 0; // default outputs to clear
*PWM_CTRL &= ~PWM_HALT; // clear HALT bit to start counter
}
void pwmout_init(pwmout_t* obj, PinName pin) {
// determine the channel
PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT((pwm != (PWMName)NC) && (event < PWM_EVENT_MAX));
// init SCT clock and outputs on first PWM init
if (event == 0) {
_pwmout_dev_init();
}
// init PWM object
event++;
obj->pwm = pwm; // pwm output
obj->mr = event; // index of match reload register
// initial duty cycle is 0
pwmout_write(obj, 0);
// Wire pinout
pinmap_pinout(pin, PinMap_PWM);
}
void pwmout_free(pwmout_t* obj) {
// [TODO]
}
void pwmout_write(pwmout_t* obj, float value) {
if (value < 0.0f) {
value = 0.0;
} else if (value > 1.0f) {
value = 1.0;
}
// set new pulse width
uint32_t us = (uint32_t)((float)PWM_GETCOUNT(*PWM_MR0) * value) * pwm_clock_mhz;
pwmout_pulsewidth_us(obj, us);
}
float pwmout_read(pwmout_t* obj) {
float v = (float)PWM_GETCOUNT(*PWM_MR(obj->mr)) / (float)PWM_GETCOUNT(*PWM_MR0);
return (v > 1.0f) ? (1.0f) : (v);
}
void pwmout_period(pwmout_t* obj, float seconds) {
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms) {
pwmout_period_us(obj, ms * 1000);
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us) {
// calculate number of ticks
uint32_t ticks = pwm_clock_mhz * us;
uint32_t old_ticks = PWM_GETCOUNT(*PWM_MR0);
uint32_t i, v;
// set new period
*PWM_MR0 = PWM_SETCOUNT(ticks);
// Scale pulse widths to preserve the duty ratio
for (i = 1; i < PWM_EVENT_MAX; i++) {
v = PWM_GETCOUNT(*PWM_MR(i));
if (v > 1) {
v = (v * ticks) / old_ticks;
*PWM_MR(i) = PWM_SETCOUNT(v);
}
}
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
// calculate number of ticks
uint32_t v = pwm_clock_mhz * us;
//MBED_ASSERT(PWM_GETCOUNT(*PWM_MR0) >= v);
if (v > 0) {
// set new match register value and enable SCT output
*PWM_MR(obj->mr) = PWM_SETCOUNT(v);
LPC_SCT->OUT[obj->pwm].CLR = (1 << obj->mr); // on event will clear PWM_XX
} else {
// set match to zero and disable SCT output
*PWM_MR(obj->mr) = 0;
LPC_SCT->OUT[obj->pwm].CLR = 0;
}
}