mbed-os/targets/TARGET_NXP/TARGET_LPC43XX/i2c_api.c

402 lines
10 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Ported to NXP LPC43XX by Micromint USA <support@micromint.com>
*/
#include "i2c_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
// SCU mode for I2C SCL/SDA pins
#define SCU_PINIO_I2C SCU_PINIO_PULLNONE
static const PinMap PinMap_I2C_SDA[] = {
{P_DED, I2C_0, 0},
{P2_3, I2C_1, (SCU_PINIO_I2C | 1)},
{PE_13, I2C_1, (SCU_PINIO_I2C | 2)},
{NC, NC, 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{P_DED, I2C_0, 0},
{P2_4, I2C_1, (SCU_PINIO_I2C | 1)},
{PE_14, I2C_1, (SCU_PINIO_I2C | 2)},
{NC, NC, 0}
};
#define I2C_CONSET(x) (x->i2c->CONSET)
#define I2C_CONCLR(x) (x->i2c->CONCLR)
#define I2C_STAT(x) (x->i2c->STAT)
#define I2C_DAT(x) (x->i2c->DAT)
#define I2C_SCLL(x, val) (x->i2c->SCLL = val)
#define I2C_SCLH(x, val) (x->i2c->SCLH = val)
static const uint32_t I2C_addr_offset[2][4] = {
{0x0C, 0x20, 0x24, 0x28},
{0x30, 0x34, 0x38, 0x3C}
};
static inline void i2c_conclr(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
I2C_CONCLR(obj) = (start << 5)
| (stop << 4)
| (interrupt << 3)
| (acknowledge << 2);
}
static inline void i2c_conset(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
I2C_CONSET(obj) = (start << 5)
| (stop << 4)
| (interrupt << 3)
| (acknowledge << 2);
}
// Clear the Serial Interrupt (SI)
static inline void i2c_clear_SI(i2c_t *obj) {
i2c_conclr(obj, 0, 0, 1, 0);
}
static inline int i2c_status(i2c_t *obj) {
return I2C_STAT(obj);
}
// Wait until the Serial Interrupt (SI) is set
static int i2c_wait_SI(i2c_t *obj) {
int timeout = 0;
while (!(I2C_CONSET(obj) & (1 << 3))) {
timeout++;
if (timeout > 100000) return -1;
}
return 0;
}
static inline void i2c_interface_enable(i2c_t *obj) {
I2C_CONSET(obj) = 0x40;
}
void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
// determine the SPI to use
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
obj->i2c = (LPC_I2C_T *)pinmap_merge(i2c_sda, i2c_scl);
if ((int)obj->i2c == NC) {
error("I2C pin mapping failed");
}
// set default frequency at 100k
i2c_frequency(obj, 100000);
i2c_conclr(obj, 1, 1, 1, 1);
i2c_interface_enable(obj);
// Set SCU functions
if (scl == P_DED) {
// Enable dedicated I2C0 SDA and SCL pins (open drain)
LPC_SCU->SFSI2C0 = (1 << 11) | (1 << 3);
} else {
pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL);
}
}
inline int i2c_start(i2c_t *obj) {
int status = 0;
int isInterrupted = I2C_CONSET(obj) & (1 << 3);
// 8.1 Before master mode can be entered, I2CON must be initialised to:
// - I2EN STA STO SI AA - -
// - 1 0 0 x x - -
// if AA = 0, it can't enter slave mode
i2c_conclr(obj, 1, 1, 0, 1);
// The master mode may now be entered by setting the STA bit
// this will generate a start condition when the bus becomes free
i2c_conset(obj, 1, 0, 0, 1);
// Clearing SI bit when it wasn't set on entry can jump past state
// 0x10 or 0x08 and erroneously send uninitialized slave address.
if (isInterrupted)
i2c_clear_SI(obj);
i2c_wait_SI(obj);
status = i2c_status(obj);
// Clear start bit now that it's transmitted
i2c_conclr(obj, 1, 0, 0, 0);
return status;
}
inline int i2c_stop(i2c_t *obj) {
int timeout = 0;
// write the stop bit
i2c_conset(obj, 0, 1, 0, 0);
i2c_clear_SI(obj);
// wait for STO bit to reset
while(I2C_CONSET(obj) & (1 << 4)) {
timeout ++;
if (timeout > 100000) return 1;
}
return 0;
}
static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
// write the data
I2C_DAT(obj) = value;
// clear SI to init a send
i2c_clear_SI(obj);
// wait and return status
i2c_wait_SI(obj);
return i2c_status(obj);
}
static inline int i2c_do_read(i2c_t *obj, int last) {
// we are in state 0x40 (SLA+R tx'd) or 0x50 (data rx'd and ack)
if(last) {
i2c_conclr(obj, 0, 0, 0, 1); // send a NOT ACK
} else {
i2c_conset(obj, 0, 0, 0, 1); // send a ACK
}
// accept byte
i2c_clear_SI(obj);
// wait for it to arrive
i2c_wait_SI(obj);
// return the data
return (I2C_DAT(obj) & 0xFF);
}
void i2c_frequency(i2c_t *obj, int hz) {
// [TODO] set pclk to /4
uint32_t PCLK = SystemCoreClock / 4;
uint32_t pulse = PCLK / (hz * 2);
// I2C Rate
I2C_SCLL(obj, pulse);
I2C_SCLH(obj, pulse);
}
// The I2C does a read or a write as a whole operation
// There are two types of error conditions it can encounter
// 1) it can not obtain the bus
// 2) it gets error responses at part of the transmission
//
// We tackle them as follows:
// 1) we retry until we get the bus. we could have a "timeout" if we can not get it
// which basically turns it in to a 2)
// 2) on error, we use the standard error mechanisms to report/debug
//
// Therefore an I2C transaction should always complete. If it doesn't it is usually
// because something is setup wrong (e.g. wiring), and we don't need to programatically
// check for that
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
int count, status;
status = i2c_start(obj);
if ((status != 0x10) && (status != 0x08)) {
i2c_stop(obj);
return I2C_ERROR_BUS_BUSY;
}
status = i2c_do_write(obj, (address | 0x01), 1);
if (status != 0x40) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
// Read in all except last byte
for (count = 0; count < (length - 1); count++) {
int value = i2c_do_read(obj, 0);
status = i2c_status(obj);
if (status != 0x50) {
i2c_stop(obj);
return count;
}
data[count] = (char) value;
}
// read in last byte
int value = i2c_do_read(obj, 1);
status = i2c_status(obj);
if (status != 0x58) {
i2c_stop(obj);
return length - 1;
}
data[count] = (char) value;
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
int i, status;
status = i2c_start(obj);
if ((status != 0x10) && (status != 0x08)) {
i2c_stop(obj);
return I2C_ERROR_BUS_BUSY;
}
status = i2c_do_write(obj, (address & 0xFE), 1);
if (status != 0x18) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
for (i=0; i<length; i++) {
status = i2c_do_write(obj, data[i], 0);
if(status != 0x28) {
i2c_stop(obj);
return i;
}
}
// clearing the serial interrupt here might cause an unintended rewrite of the last byte
// see also issue report https://mbed.org/users/mbed_official/code/mbed/issues/1
// i2c_clear_SI(obj);
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
return length;
}
void i2c_reset(i2c_t *obj) {
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last) {
return (i2c_do_read(obj, last) & 0xFF);
}
int i2c_byte_write(i2c_t *obj, int data) {
int ack;
int status = i2c_do_write(obj, (data & 0xFF), 0);
switch(status) {
case 0x18: case 0x28: // Master transmit ACKs
ack = 1;
break;
case 0x40: // Master receive address transmitted ACK
ack = 1;
break;
case 0xB8: // Slave transmit ACK
ack = 1;
break;
default:
ack = 0;
break;
}
return ack;
}
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
if (enable_slave != 0) {
i2c_conclr(obj, 1, 1, 1, 0);
i2c_conset(obj, 0, 0, 0, 1);
} else {
i2c_conclr(obj, 1, 1, 1, 1);
}
}
int i2c_slave_receive(i2c_t *obj) {
int status;
int retval;
status = i2c_status(obj);
switch(status) {
case 0x60: retval = 3; break;
case 0x70: retval = 2; break;
case 0xA8: retval = 1; break;
default : retval = 0; break;
}
return(retval);
}
int i2c_slave_read(i2c_t *obj, char *data, int length) {
int count = 0;
int status;
do {
i2c_clear_SI(obj);
i2c_wait_SI(obj);
status = i2c_status(obj);
if((status == 0x80) || (status == 0x90)) {
data[count] = I2C_DAT(obj) & 0xFF;
}
count++;
} while (((status == 0x80) || (status == 0x90) ||
(status == 0x060) || (status == 0x70)) && (count < length));
if(status != 0xA0) {
i2c_stop(obj);
}
i2c_clear_SI(obj);
return count;
}
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
int count = 0;
int status;
if(length <= 0) {
return(0);
}
do {
status = i2c_do_write(obj, data[count], 0);
count++;
} while ((count < length) && (status == 0xB8));
if ((status != 0xC0) && (status != 0xC8)) {
i2c_stop(obj);
}
i2c_clear_SI(obj);
return(count);
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
uint32_t addr;
if ((idx >= 0) && (idx <= 3)) {
addr = ((uint32_t)obj->i2c) + I2C_addr_offset[0][idx];
*((uint32_t *) addr) = address & 0xFF;
addr = ((uint32_t)obj->i2c) + I2C_addr_offset[1][idx];
*((uint32_t *) addr) = mask & 0xFE;
}
}