mbed-os/targets/TARGET_Maxim/TARGET_MAX32625/mxc/spim.c

721 lines
22 KiB
C

/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*
* $Date: 2016-07-26 08:41:27 -0500 (Tue, 26 Jul 2016) $
* $Revision: 23789 $
*
******************************************************************************/
/**
* @file spim.c
* @brief SPI Master driver source.
*/
/***** Includes *****/
#include <stddef.h>
#include <string.h>
#include "mxc_config.h"
#include "mxc_assert.h"
#include "mxc_lock.h"
#include "spim.h"
/***** Definitions *****/
#define SPIM_MAX_BYTE_LEN 32
#define SPIM_MAX_PAGE_LEN 32
/***** Globals *****/
// Saves the state of the non-blocking requests
typedef struct {
spim_req_t *req;
unsigned head_rem;
} spim_req_head_t;
static spim_req_head_t states[MXC_CFG_SPIM_INSTANCES];
/***** Functions *****/
static unsigned SPIM_ReadRXFIFO(mxc_spim_regs_t *spim, mxc_spim_fifo_regs_t *fifo,
uint8_t *data, unsigned len);
static uint32_t SPIM_TransHandler(mxc_spim_regs_t *spim, spim_req_t *req, int spim_num);
/******************************************************************************/
int SPIM_Init(mxc_spim_regs_t *spim, const spim_cfg_t *cfg, const sys_cfg_spim_t *sys_cfg)
{
int err, spim_num;
uint32_t spim_clk, clocks;
spim_num = MXC_SPIM_GET_IDX(spim);
MXC_ASSERT(spim_num >= 0);
// Check the input parameters
if(cfg == NULL)
return E_NULL_PTR;
if(cfg->baud == 0)
return E_BAD_PARAM;
// Set system level configurations
if ((err = SYS_SPIM_Init(spim, cfg, sys_cfg)) != E_NO_ERROR) {
return err;
}
/* Configure the baud, make sure the SPIM clk is enabled and the baud
is less than the maximum */
spim_clk = SYS_SPIM_GetFreq(spim);
if((spim_clk == 0) || ((spim_clk == SystemCoreClock) && ((spim_clk/2) < cfg->baud))) {
return E_BAD_PARAM;
}
// Initialize state pointers
states[spim_num].req = NULL;
states[spim_num].head_rem = 0;
// Drain the FIFOs, enable SPIM, enable SCK Feedback
spim->gen_ctrl = 0;
spim->gen_ctrl = (MXC_F_SPIM_GEN_CTRL_SPI_MSTR_EN | MXC_F_SPIM_GEN_CTRL_TX_FIFO_EN |
MXC_F_SPIM_GEN_CTRL_RX_FIFO_EN | MXC_F_SPIM_GEN_CTRL_ENABLE_SCK_FB_MODE);
// Set mode and page size
spim->mstr_cfg = (((cfg->mode << MXC_F_SPIM_MSTR_CFG_SPI_MODE_POS) & MXC_F_SPIM_MSTR_CFG_SPI_MODE) |
MXC_S_SPIM_MSTR_CFG_PAGE_32B | (0x2 << MXC_F_SPIM_MSTR_CFG_ACT_DELAY_POS));
// Configure the SSEL polarity
spim->ss_sr_polarity = ((cfg->ssel_pol << MXC_F_SPIM_SS_SR_POLARITY_SS_POLARITY_POS) &
MXC_F_SPIM_SS_SR_POLARITY_SS_POLARITY);
#if(MXC_SPIM_REV == 0)
// Disable the feedback clock in modes 1 and 2
if((cfg->mode == 1) || (cfg->mode == 2)) {
spim->gen_ctrl &= ~MXC_F_SPIM_GEN_CTRL_ENABLE_SCK_FB_MODE;
spim->mstr_cfg |= (0x1 << MXC_F_SPIM_MSTR_CFG_SDIO_SAMPLE_POINT_POS);
}
#else
// Increase the RX FIFO margin
MXC_SPIM1->spcl_ctrl = ((MXC_SPIM1->spcl_ctrl & ~(MXC_F_SPIM_SPCL_CTRL_RX_FIFO_MARGIN)) |
(0x3 << MXC_F_SPIM_SPCL_CTRL_RX_FIFO_MARGIN_POS));
#endif
// Calculate the hi/lo clock setting
if(spim_clk/2 > cfg->baud) {
/* Disable the feedback mode and use the sample mode with an appropriate hi/lo clk
to achieve the lower baud rate */
spim->gen_ctrl &= ~MXC_F_SPIM_GEN_CTRL_ENABLE_SCK_FB_MODE;
clocks = (spim_clk / (2*cfg->baud));
if(clocks == 0 || clocks > 0x10) {
return E_BAD_PARAM;
}
// 0 => 16 in the 4 bit field for HI_CLK and LO_CLK
if(clocks == 0x10) {
clocks = 0;
}
} else {
// Continue to use feedback mode and set hi/lo clk to 1
clocks = 1;
}
spim->mstr_cfg |= (((clocks << MXC_F_SPIM_MSTR_CFG_SCK_HI_CLK_POS) & MXC_F_SPIM_MSTR_CFG_SCK_HI_CLK) |
((clocks << MXC_F_SPIM_MSTR_CFG_SCK_LO_CLK_POS) & MXC_F_SPIM_MSTR_CFG_SCK_LO_CLK));
return E_NO_ERROR;
}
/******************************************************************************/
int SPIM_Shutdown(mxc_spim_regs_t *spim)
{
int spim_num, err;
spim_req_t *temp_req;
// Disable and clear interrupts
spim->inten = 0;
spim->intfl = spim->intfl;
// Disable SPIM and FIFOS
spim->gen_ctrl &= ~(MXC_F_SPIM_GEN_CTRL_SPI_MSTR_EN | MXC_F_SPIM_GEN_CTRL_TX_FIFO_EN |
MXC_F_SPIM_GEN_CTRL_RX_FIFO_EN);
// Call all of the pending callbacks for this SPIM
spim_num = MXC_SPIM_GET_IDX(spim);
if(states[spim_num].req != NULL) {
// Save the request
temp_req = states[spim_num].req;
// Unlock this SPIM
mxc_free_lock((uint32_t*)&states[spim_num].req);
// Callback if not NULL
if(temp_req->callback != NULL) {
temp_req->callback(temp_req, E_SHUTDOWN);
}
}
// Clear system level configurations
if ((err = SYS_SPIM_Shutdown(spim)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
int SPIM_Clocks(mxc_spim_regs_t *spim, uint32_t len, uint8_t ssel, uint8_t deass)
{
int spim_num;
mxc_spim_fifo_regs_t *fifo;
uint16_t header = 0x1;
uint32_t num = len;
// Make sure the SPIM has been initialized
if((spim->gen_ctrl & MXC_F_SPIM_GEN_CTRL_SPI_MSTR_EN) == 0)
return E_UNINITIALIZED;
if(!(len > 0)) {
return E_NO_ERROR;
}
// Check the previous transaction if we're switching the slave select
if((ssel != ((spim->mstr_cfg & MXC_F_SPIM_MSTR_CFG_SLAVE_SEL) >>
MXC_F_SPIM_MSTR_CFG_SLAVE_SEL_POS)) && (spim->gen_ctrl & MXC_F_SPIM_GEN_CTRL_BB_SS_IN_OUT)) {
// Return E_BUSY if the slave select is still asserted
return E_BUSY;
}
// Attempt to lock this SPIM
spim_num = MXC_SPIM_GET_IDX(spim);
if(mxc_get_lock((uint32_t*)&states[spim_num].req, 1) != E_NO_ERROR) {
return E_BUSY;
}
// Set which slave select we are using
spim->mstr_cfg = ((spim->mstr_cfg & ~MXC_F_SPIM_MSTR_CFG_SLAVE_SEL) |
((ssel << MXC_F_SPIM_MSTR_CFG_SLAVE_SEL_POS) & MXC_F_SPIM_MSTR_CFG_SLAVE_SEL));
//force deass to a 1 or 0
deass = !!deass;
#if(MXC_SPIM_REV == 0)
// Wait for all of the data to transmit
while(spim->fifo_ctrl & MXC_F_SPIM_FIFO_CTRL_TX_FIFO_USED) {}
// Disable the feedback clock, save state
uint32_t gen_ctrl = spim->gen_ctrl;
spim->gen_ctrl &= ~MXC_F_SPIM_GEN_CTRL_ENABLE_SCK_FB_MODE;
#endif
// Get the TX and RX FIFO for this SPIM
fifo = MXC_SPIM_GET_SPIM_FIFO(spim_num);
// Send the headers to transmit the clocks
while(len > 32) {
fifo->trans_16[0] = header;
fifo->trans_16[0] = 0xF000;
fifo->trans_16[0] = 0xF000;
len -= 32;
}
if(len) {
if(len < 32) {
header |= (len << 4);
}
header |= (deass << 13);
fifo->trans_16[0] = header;
if(len > 16) {
fifo->trans_16[0] = 0xF000;
}
fifo->trans_16[0] = 0xF000;
}
#if(MXC_SPIM_REV == 0)
// Wait for all of the data to transmit
while(spim->fifo_ctrl & MXC_F_SPIM_FIFO_CTRL_TX_FIFO_USED) {}
// Restore feedback clock setting
spim->gen_ctrl |= (gen_ctrl & MXC_F_SPIM_GEN_CTRL_ENABLE_SCK_FB_MODE);
#endif
// Unlock this SPIM
mxc_free_lock((uint32_t*)&states[spim_num].req);
return num;
}
/******************************************************************************/
int SPIM_Trans(mxc_spim_regs_t *spim, spim_req_t *req)
{
int spim_num;
// Make sure the SPIM has been initialized
if((spim->gen_ctrl & MXC_F_SPIM_GEN_CTRL_SPI_MSTR_EN) == 0)
return E_UNINITIALIZED;
// Check the input parameters
if(req == NULL)
return E_NULL_PTR;
if((req->rx_data == NULL) && (req->tx_data == NULL))
return E_NULL_PTR;
if(!(req->len > 0)) {
return E_NO_ERROR;
}
// Check the previous transaction if we're switching the slave select
if((req->ssel != ((spim->mstr_cfg & MXC_F_SPIM_MSTR_CFG_SLAVE_SEL) >>
MXC_F_SPIM_MSTR_CFG_SLAVE_SEL_POS)) && (spim->gen_ctrl & MXC_F_SPIM_GEN_CTRL_BB_SS_IN_OUT)) {
// Return E_BUSY if the slave select is still asserted
return E_BUSY;
}
// Attempt to register this write request
spim_num = MXC_SPIM_GET_IDX(spim);
if(mxc_get_lock((uint32_t*)&states[spim_num].req, (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
// Set which slave select we are using
spim->mstr_cfg = ((spim->mstr_cfg & ~MXC_F_SPIM_MSTR_CFG_SLAVE_SEL) |
((req->ssel << MXC_F_SPIM_MSTR_CFG_SLAVE_SEL_POS) & MXC_F_SPIM_MSTR_CFG_SLAVE_SEL));
//force deass to a 1 or 0
req->deass = !!req->deass;
// Clear the number of bytes counter
req->read_num = 0;
req->write_num = 0;
req->callback = NULL;
states[spim_num].head_rem = 0;
// Start the transaction, keep calling the handler until complete
while(SPIM_TransHandler(spim, req, spim_num) != 0);
if(req->tx_data == NULL) {
return req->read_num;
}
return req->write_num;
}
/******************************************************************************/
int SPIM_TransAsync(mxc_spim_regs_t *spim, spim_req_t *req)
{
int spim_num;
// Make sure the SPIM has been initialized
if((spim->gen_ctrl & MXC_F_SPIM_GEN_CTRL_SPI_MSTR_EN) == 0)
return E_UNINITIALIZED;
// Check the input parameters
if(req == NULL)
return E_NULL_PTR;
if((req->rx_data == NULL) && (req->tx_data == NULL))
return E_NULL_PTR;
if(!(req->len > 0)) {
return E_NO_ERROR;
}
// Check the previous transaction if we're switching the slave select
if((req->ssel != ((spim->mstr_cfg & MXC_F_SPIM_MSTR_CFG_SLAVE_SEL) >>
MXC_F_SPIM_MSTR_CFG_SLAVE_SEL_POS)) && (spim->gen_ctrl & MXC_F_SPIM_GEN_CTRL_BB_SS_IN_OUT)) {
// Return E_BUSY if the slave select is still asserted
return E_BUSY;
}
// Attempt to register this write request
spim_num = MXC_SPIM_GET_IDX(spim);
if(mxc_get_lock((uint32_t*)&states[spim_num].req, (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
// Set which slave select we are using
spim->mstr_cfg = ((spim->mstr_cfg & ~MXC_F_SPIM_MSTR_CFG_SLAVE_SEL) |
((req->ssel << MXC_F_SPIM_MSTR_CFG_SLAVE_SEL_POS) & MXC_F_SPIM_MSTR_CFG_SLAVE_SEL));
//force deass to a 1 or 0
req->deass = !!req->deass;
// Clear the number of bytes counter
req->read_num = 0;
req->write_num = 0;
states[spim_num].head_rem = 0;
// Start the transaction, enable the interrupts
spim->inten = SPIM_TransHandler(spim, req, spim_num);
return E_NO_ERROR;
}
/******************************************************************************/
int SPIM_AbortAsync(spim_req_t *req)
{
int spim_num;
mxc_spim_regs_t *spim;
// Check the input parameters
if(req == NULL) {
return E_BAD_PARAM;
}
// Find the request, set to NULL
for(spim_num = 0; spim_num < MXC_CFG_SPIM_INSTANCES; spim_num++) {
if(req == states[spim_num].req) {
spim = MXC_SPIM_GET_SPIM(spim_num);
// Disable interrupts, clear the flags
spim->inten = 0;
spim->intfl = spim->intfl;
// Reset the SPIM to cancel the on ongoing transaction
spim->gen_ctrl &= ~(MXC_F_SPIM_GEN_CTRL_SPI_MSTR_EN);
spim->gen_ctrl |= (MXC_F_SPIM_GEN_CTRL_SPI_MSTR_EN);
// Unlock this SPIM
mxc_free_lock((uint32_t*)&states[spim_num].req);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(req, E_ABORT);
}
return E_NO_ERROR;
}
}
return E_BAD_PARAM;
}
/******************************************************************************/
void SPIM_Handler(mxc_spim_regs_t *spim)
{
int spim_num;
uint32_t flags;
// Clear the interrupt flags
spim->inten = 0;
flags = spim->intfl;
spim->intfl = flags;
spim_num = MXC_SPIM_GET_IDX(spim);
// Figure out if this SPIM has an active request
if((states[spim_num].req != NULL) && (flags)) {
spim->inten = SPIM_TransHandler(spim, states[spim_num].req, spim_num);
}
}
/******************************************************************************/
int SPIM_Busy(mxc_spim_regs_t *spim)
{
// Check to see if there are any ongoing transactions
if((states[MXC_SPIM_GET_IDX(spim)].req == NULL) &&
!(spim->fifo_ctrl & MXC_F_SPIM_FIFO_CTRL_TX_FIFO_USED)) {
return E_NO_ERROR;
}
return E_BUSY;
}
/******************************************************************************/
int SPIM_PrepForSleep(mxc_spim_regs_t *spim)
{
if(SPIM_Busy(spim) != E_NO_ERROR) {
return E_BUSY;
}
// Disable interrupts
spim->inten = 0;
return E_NO_ERROR;
}
/******************************************************************************/
static unsigned SPIM_ReadRXFIFO(mxc_spim_regs_t *spim, mxc_spim_fifo_regs_t *fifo,
uint8_t *data, unsigned len)
{
unsigned num = 0;
unsigned avail = ((spim->fifo_ctrl & MXC_F_SPIM_FIFO_CTRL_RX_FIFO_USED) >>
MXC_F_SPIM_FIFO_CTRL_RX_FIFO_USED_POS);
// Get data from the RXFIFO
while(avail && (len - num)) {
if((avail >= 4) && ((len-num) >= 4)) {
// Save data from the RXFIFO
uint32_t temp = fifo->rslts_32[0];
data[num+0] = ((temp & 0x000000FF) >> 0);
data[num+1] = ((temp & 0x0000FF00) >> 8);
data[num+2] = ((temp & 0x00FF0000) >> 16);
data[num+3] = ((temp & 0xFF000000) >> 24);
num+=4;
avail-=4;
} else if ((avail >= 2) && ((len-num) >= 2)) {
// Save data from the RXFIFO
uint16_t temp = fifo->rslts_16[0];
data[num+0] = ((temp & 0x00FF) >> 0);
data[num+1] = ((temp & 0xFF00) >> 8);
num+=2;
avail-=2;
} else {
// Save data from the RXFIFO
data[num] = fifo->rslts_8[0];
num+=1;
avail-=1;
}
// Check to see if there is more data in the FIFO
if(avail == 0) {
avail = ((spim->fifo_ctrl & MXC_F_SPIM_FIFO_CTRL_RX_FIFO_USED) >>
MXC_F_SPIM_FIFO_CTRL_RX_FIFO_USED_POS);
}
}
return num;
}
uint16_t header_save;
/******************************************************************************/
static uint32_t SPIM_TransHandler(mxc_spim_regs_t *spim, spim_req_t *req, int spim_num)
{
uint8_t read, write;
uint16_t header;
uint32_t pages, bytes, inten;
unsigned remain, bytes_read, head_rem_temp, avail;
mxc_spim_fifo_regs_t *fifo;
inten = 0;
// Get the FIFOS for this UART
fifo = MXC_SPIM_GET_SPIM_FIFO(spim_num);
// Figure out if we're reading
if(req->rx_data != NULL) {
read = 1;
} else {
read = 0;
}
// Figure out if we're writing
if(req->tx_data != NULL) {
write = 1;
} else {
write = 0;
}
// Read byte from the FIFO if we are reading
if(read) {
// Read all of the data in the RXFIFO, or until we don't need anymore
bytes_read = SPIM_ReadRXFIFO(spim, fifo, &req->rx_data[req->read_num],
(req->len - req->read_num));
req->read_num += bytes_read;
// Adjust head_rem if we are only reading
if(!write && (states[spim_num].head_rem > 0)) {
states[spim_num].head_rem -= bytes_read;
}
// Figure out how many byte we have left to read
if(states[spim_num].head_rem > 0) {
remain = states[spim_num].head_rem;
} else {
remain = req->len - req->read_num;
}
if(remain) {
// Set the RX interrupts
if (remain > MXC_CFG_SPIM_FIFO_DEPTH) {
spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPIM_FIFO_CTRL_RX_FIFO_AF_LVL) |
((MXC_CFG_SPIM_FIFO_DEPTH - 2) <<
MXC_F_SPIM_FIFO_CTRL_RX_FIFO_AF_LVL_POS));
} else {
spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPIM_FIFO_CTRL_RX_FIFO_AF_LVL) |
((remain - 1) << MXC_F_SPIM_FIFO_CTRL_RX_FIFO_AF_LVL_POS));
}
inten |= MXC_F_SPIM_INTEN_RX_FIFO_AF;
}
}
// Figure out how many bytes we have left to send headers for
if(write) {
remain = req->len - req->write_num;
} else {
remain = req->len - req->read_num;
}
// See if we need to send a new header
if(states[spim_num].head_rem <= 0 && remain) {
// Set the transaction configuration in the header
header = ((write << 0) | (read << 1) | (req->width << 9));
if(remain >= SPIM_MAX_BYTE_LEN) {
// Send a 32 byte header
if(remain == SPIM_MAX_BYTE_LEN) {
header |= ((0x1 << 2) | (req->deass << 13));
// Save the number of bytes we need to write to the FIFO
bytes = SPIM_MAX_BYTE_LEN;
} else {
// Send in increments of 32 byte pages
header |= (0x2 << 2);
pages = remain / SPIM_MAX_PAGE_LEN;
if(pages >= 32) {
// 0 maps to 32 in the header
bytes = 32 * SPIM_MAX_PAGE_LEN;
} else {
header |= (pages << 4);
bytes = pages * SPIM_MAX_PAGE_LEN;
}
// Check if this is the last header we will send
if((remain - bytes) == 0) {
header |= (req->deass << 13);
}
}
header_save = header;
fifo->trans_16[0] = header;
// Save the number of bytes we need to write to the FIFO
states[spim_num].head_rem = bytes;
} else {
// Send final header with the number of bytes remaining and if
// we want to de-assert the SS at the end of the transaction
header |= ((0x1 << 2) | (remain << 4) | (req->deass << 13));
fifo->trans_16[0] = header;
states[spim_num].head_rem = remain;
}
}
// Put data into the FIFO if we are writing
remain = req->len - req->write_num;
head_rem_temp = states[spim_num].head_rem;
if(write && head_rem_temp) {
// Fill the FIFO
avail = (MXC_CFG_SPIM_FIFO_DEPTH - ((spim->fifo_ctrl & MXC_F_SPIM_FIFO_CTRL_TX_FIFO_USED) >>
MXC_F_SPIM_FIFO_CTRL_TX_FIFO_USED_POS));
// Use memcpy for everything except the last byte in odd length transactions
while((avail >= 2) && (head_rem_temp >= 2)) {
unsigned length;
if(head_rem_temp < avail) {
length = head_rem_temp;
} else {
length = avail;
}
// Only memcpy even numbers
length = ((length / 2) * 2);
memcpy((void*)fifo->trans_32, &(req->tx_data[req->write_num]), length);
head_rem_temp -= length;
req->write_num += length;
avail = (MXC_CFG_SPIM_FIFO_DEPTH - ((spim->fifo_ctrl & MXC_F_SPIM_FIFO_CTRL_TX_FIFO_USED) >>
MXC_F_SPIM_FIFO_CTRL_TX_FIFO_USED_POS));
}
// Copy the last byte and pad with 0xF0 to not get confused as header
if((avail >= 1) && (head_rem_temp == 1)) {
// Write the last byte
fifo->trans_16[0] = (0xF000 | req->tx_data[req->write_num]);
avail -= 1;
req->write_num += 1;
head_rem_temp -= 1;
}
states[spim_num].head_rem = head_rem_temp;
remain = req->len - req->write_num;
// Set the TX interrupts
if(remain) {
// Set the TX FIFO almost empty interrupt if we have to refill
spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPIM_FIFO_CTRL_TX_FIFO_AE_LVL) |
((MXC_CFG_SPIM_FIFO_DEPTH - 2) << MXC_F_SPIM_FIFO_CTRL_TX_FIFO_AE_LVL_POS));
inten |= MXC_F_SPIM_INTEN_TX_FIFO_AE;
}
}
// Check to see if we've finished reading and writing
if(((read && (req->read_num == req->len)) || !read) &&
((req->write_num == req->len) || !write)) {
// Disable interrupts
spim->inten = 0;
// Unlock this SPIM
mxc_free_lock((uint32_t*)&states[spim_num].req);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
}
// Enable the SPIM interrupts
return inten;
}