mirror of https://github.com/ARMmbed/mbed-os.git
368 lines
11 KiB
C
368 lines
11 KiB
C
/* mbed Microcontroller Library
|
|
* Copyright (c) 2006-2013 ARM Limited
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
// math.h required for floating point operations for baud rate calculation
|
|
#include "mbed_assert.h"
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "serial_api.h"
|
|
#include "cmsis.h"
|
|
#include "pinmap.h"
|
|
#include "mbed_error.h"
|
|
|
|
#if DEVICE_SERIAL
|
|
|
|
/******************************************************************************
|
|
* INITIALIZATION
|
|
******************************************************************************/
|
|
#define UART_NUM 3
|
|
|
|
static const SWM_Map SWM_UART_TX[] = {
|
|
{0, 0},
|
|
{1, 8},
|
|
{2, 16},
|
|
};
|
|
|
|
static const SWM_Map SWM_UART_RX[] = {
|
|
{0, 8},
|
|
{1, 16},
|
|
{2, 24},
|
|
};
|
|
|
|
static const SWM_Map SWM_UART_RTS[] = {
|
|
{0, 16},
|
|
{1, 24},
|
|
{3, 0},
|
|
};
|
|
|
|
static const SWM_Map SWM_UART_CTS[] = {
|
|
{0, 24},
|
|
{2, 0},
|
|
{3, 8}
|
|
};
|
|
|
|
// bit flags for used UARTs
|
|
static unsigned char uart_used = 0;
|
|
|
|
static int get_available_uart(void)
|
|
{
|
|
int i;
|
|
for (i=0; i<UART_NUM; i++) {
|
|
if ((uart_used & (1 << i)) == 0)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#define UART_EN (0x01<<0)
|
|
|
|
#define CTS_DELTA (0x01<<5)
|
|
#define RXBRK (0x01<<10)
|
|
#define DELTA_RXBRK (0x01<<11)
|
|
|
|
#define RXRDY (0x01<<0)
|
|
#define TXRDY (0x01<<2)
|
|
|
|
#define RXRDYEN RXRDY
|
|
#define TXRDYEN TXRDY
|
|
|
|
#define TXBRKEN (0x01<<1)
|
|
#define CTSEN (0x01<<9)
|
|
|
|
static uint32_t UARTSysClk;
|
|
|
|
static uint32_t serial_irq_ids[UART_NUM] = {0};
|
|
static uart_irq_handler irq_handler;
|
|
|
|
int stdio_uart_inited = 0;
|
|
serial_t stdio_uart;
|
|
|
|
static int check_duplication(serial_t *obj, PinName tx, PinName rx)
|
|
{
|
|
if (uart_used == 0)
|
|
return 0;
|
|
|
|
const SWM_Map *swm;
|
|
uint32_t assigned_tx, assigned_rx;
|
|
int ch;
|
|
for (ch=0; ch<UART_NUM; ch++) {
|
|
// read assigned TX in the UART channel of switch matrix
|
|
swm = &SWM_UART_TX[ch];
|
|
assigned_tx = LPC_SWM->PINASSIGN[swm->n] & (0xFF << swm->offset);
|
|
assigned_tx = assigned_tx >> swm->offset;
|
|
// read assigned RX in the UART channel of switch matrix
|
|
swm = &SWM_UART_RX[ch];
|
|
assigned_rx = LPC_SWM->PINASSIGN[swm->n] & (0xFF << swm->offset);
|
|
assigned_rx = assigned_rx >> swm->offset;
|
|
if ((assigned_tx == (uint32_t)(tx >> PIN_SHIFT)) && (assigned_rx == (uint32_t)(rx >> PIN_SHIFT))) {
|
|
obj->index = ch;
|
|
obj->uart = (LPC_USART0_Type *)(LPC_USART0_BASE + (0x4000 * ch));
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void serial_init(serial_t *obj, PinName tx, PinName rx)
|
|
{
|
|
int is_stdio_uart = 0;
|
|
|
|
if (check_duplication(obj, tx, rx) == 1)
|
|
return;
|
|
|
|
int uart_n = get_available_uart();
|
|
if (uart_n == -1) {
|
|
error("No available UART");
|
|
}
|
|
obj->index = uart_n;
|
|
obj->uart = (LPC_USART0_Type *)(LPC_USART0_BASE + (0x4000 * uart_n));
|
|
uart_used |= (1 << uart_n);
|
|
|
|
const SWM_Map *swm;
|
|
uint32_t regVal;
|
|
|
|
swm = &SWM_UART_TX[uart_n];
|
|
regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
|
|
LPC_SWM->PINASSIGN[swm->n] = regVal | ((tx >> PIN_SHIFT) << swm->offset);
|
|
|
|
swm = &SWM_UART_RX[uart_n];
|
|
regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
|
|
LPC_SWM->PINASSIGN[swm->n] = regVal | ((rx >> PIN_SHIFT) << swm->offset);
|
|
|
|
/* uart clock divided by 1 */
|
|
LPC_SYSCON->UARTCLKDIV = 1;
|
|
|
|
/* disable uart interrupts */
|
|
NVIC_DisableIRQ((IRQn_Type)(UART0_IRQn + uart_n));
|
|
|
|
/* Enable UART clock */
|
|
LPC_SYSCON->SYSAHBCLKCTRL |= (1 << (14 + uart_n));
|
|
|
|
/* Peripheral reset control to UART, a "1" bring it out of reset. */
|
|
LPC_SYSCON->PRESETCTRL &= ~(0x1 << (3 + uart_n));
|
|
LPC_SYSCON->PRESETCTRL |= (0x1 << (3 + uart_n));
|
|
|
|
UARTSysClk = MainClock / LPC_SYSCON->UARTCLKDIV;
|
|
|
|
// set default baud rate and format
|
|
serial_baud (obj, 9600);
|
|
serial_format(obj, 8, ParityNone, 1);
|
|
|
|
/* Clear all status bits. */
|
|
obj->uart->STAT = CTS_DELTA | DELTA_RXBRK;
|
|
|
|
/* enable uart interrupts */
|
|
NVIC_EnableIRQ((IRQn_Type)(UART0_IRQn + uart_n));
|
|
|
|
/* Enable UART */
|
|
obj->uart->CFG |= UART_EN;
|
|
|
|
is_stdio_uart = ((tx == USBTX) && (rx == USBRX));
|
|
|
|
if (is_stdio_uart) {
|
|
stdio_uart_inited = 1;
|
|
memcpy(&stdio_uart, obj, sizeof(serial_t));
|
|
}
|
|
}
|
|
|
|
void serial_free(serial_t *obj)
|
|
{
|
|
uart_used &= ~(1 << obj->index);
|
|
serial_irq_ids[obj->index] = 0;
|
|
}
|
|
|
|
void serial_baud(serial_t *obj, int baudrate)
|
|
{
|
|
/* Integer divider:
|
|
BRG = UARTSysClk/(Baudrate * 16) - 1
|
|
|
|
Frational divider:
|
|
FRG = ((UARTSysClk / (Baudrate * 16 * (BRG + 1))) - 1)
|
|
|
|
where
|
|
FRG = (LPC_SYSCON->UARTFRDADD + 1) / (LPC_SYSCON->UARTFRDSUB + 1)
|
|
|
|
(1) The easiest way is set SUB value to 256, -1 encoded, thus SUB
|
|
register is 0xFF.
|
|
(2) In ADD register value, depending on the value of UartSysClk,
|
|
baudrate, BRG register value, and SUB register value, be careful
|
|
about the order of multiplier and divider and make sure any
|
|
multiplier doesn't exceed 32-bit boundary and any divider doesn't get
|
|
down below one(integer 0).
|
|
(3) ADD should be always less than SUB.
|
|
*/
|
|
obj->uart->BRG = UARTSysClk / 16 / baudrate - 1;
|
|
|
|
LPC_SYSCON->UARTFRGDIV = 0xFF;
|
|
LPC_SYSCON->UARTFRGMULT = ( ((UARTSysClk / 16) * (LPC_SYSCON->UARTFRGDIV + 1)) /
|
|
(baudrate * (obj->uart->BRG + 1))
|
|
) - (LPC_SYSCON->UARTFRGDIV + 1);
|
|
}
|
|
|
|
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
|
|
{
|
|
// 0: 1 stop bits, 1: 2 stop bits
|
|
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2));
|
|
MBED_ASSERT((data_bits > 6) && (data_bits < 10)); // 0: 7 data bits ... 2: 9 data bits
|
|
MBED_ASSERT((parity == ParityNone) || (parity == ParityEven) || (parity == ParityOdd));
|
|
stop_bits -= 1;
|
|
data_bits -= 7;
|
|
|
|
int paritysel = 0;
|
|
switch (parity) {
|
|
case ParityNone: paritysel = 0; break;
|
|
case ParityEven: paritysel = 2; break;
|
|
case ParityOdd : paritysel = 3; break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// First disable the the usart as described in documentation and then enable while updating CFG
|
|
|
|
// 24.6.1 USART Configuration register
|
|
// Remark: If software needs to change configuration values, the following sequence should
|
|
// be used: 1) Make sure the USART is not currently sending or receiving data. 2) Disable
|
|
// the USART by writing a 0 to the Enable bit (0 may be written to the entire register). 3)
|
|
// Write the new configuration value, with the ENABLE bit set to 1.
|
|
obj->uart->CFG &= ~(1 << 0);
|
|
|
|
obj->uart->CFG = (1 << 0) // this will enable the usart
|
|
| (data_bits << 2)
|
|
| (paritysel << 4)
|
|
| (stop_bits << 6);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* INTERRUPTS HANDLING
|
|
******************************************************************************/
|
|
static inline void uart_irq(SerialIrq irq_type, uint32_t index)
|
|
{
|
|
if (serial_irq_ids[index] != 0)
|
|
irq_handler(serial_irq_ids[index], irq_type);
|
|
}
|
|
|
|
void uart0_irq() {uart_irq((LPC_USART0->INTSTAT & RXRDY) ? RxIrq : TxIrq, 0);}
|
|
void uart1_irq() {uart_irq((LPC_USART1->INTSTAT & RXRDY) ? RxIrq : TxIrq, 1);}
|
|
void uart2_irq() {uart_irq((LPC_USART2->INTSTAT & RXRDY) ? RxIrq : TxIrq, 2);}
|
|
|
|
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
|
|
{
|
|
irq_handler = handler;
|
|
serial_irq_ids[obj->index] = id;
|
|
}
|
|
|
|
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
|
|
{
|
|
IRQn_Type irq_n = (IRQn_Type)0;
|
|
uint32_t vector = 0;
|
|
switch ((int)obj->uart) {
|
|
case LPC_USART0_BASE: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break;
|
|
case LPC_USART1_BASE: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break;
|
|
case LPC_USART2_BASE: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break;
|
|
}
|
|
|
|
if (enable) {
|
|
NVIC_DisableIRQ(irq_n);
|
|
obj->uart->INTENSET |= (1 << ((irq == RxIrq) ? 0 : 2));
|
|
NVIC_SetVector(irq_n, vector);
|
|
NVIC_EnableIRQ(irq_n);
|
|
} else { // disable
|
|
obj->uart->INTENCLR |= (1 << ((irq == RxIrq) ? 0 : 2));
|
|
if ( (obj->uart->INTENSET & (RXRDYEN | TXRDYEN)) == 0) {
|
|
NVIC_DisableIRQ(irq_n);
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* READ/WRITE
|
|
******************************************************************************/
|
|
int serial_getc(serial_t *obj)
|
|
{
|
|
while (!serial_readable(obj));
|
|
return obj->uart->RXDAT;
|
|
}
|
|
|
|
void serial_putc(serial_t *obj, int c)
|
|
{
|
|
while (!serial_writable(obj));
|
|
obj->uart->TXDAT = c;
|
|
}
|
|
|
|
int serial_readable(serial_t *obj)
|
|
{
|
|
return obj->uart->STAT & RXRDY;
|
|
}
|
|
|
|
int serial_writable(serial_t *obj)
|
|
{
|
|
return obj->uart->STAT & TXRDY;
|
|
}
|
|
|
|
void serial_clear(serial_t *obj)
|
|
{
|
|
// [TODO]
|
|
}
|
|
|
|
void serial_pinout_tx(PinName tx)
|
|
{
|
|
|
|
}
|
|
|
|
void serial_break_set(serial_t *obj)
|
|
{
|
|
obj->uart->CTL |= TXBRKEN;
|
|
}
|
|
|
|
void serial_break_clear(serial_t *obj)
|
|
{
|
|
obj->uart->CTL &= ~TXBRKEN;
|
|
}
|
|
|
|
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
|
|
{
|
|
const SWM_Map *swm_rts, *swm_cts;
|
|
uint32_t regVal_rts, regVal_cts;
|
|
|
|
swm_rts = &SWM_UART_RTS[obj->index];
|
|
swm_cts = &SWM_UART_CTS[obj->index];
|
|
regVal_rts = LPC_SWM->PINASSIGN[swm_rts->n] & ~(0xFF << swm_rts->offset);
|
|
regVal_cts = LPC_SWM->PINASSIGN[swm_cts->n] & ~(0xFF << swm_cts->offset);
|
|
|
|
if (FlowControlNone == type) {
|
|
LPC_SWM->PINASSIGN[swm_rts->n] = regVal_rts | (0xFF << swm_rts->offset);
|
|
LPC_SWM->PINASSIGN[swm_cts->n] = regVal_cts | (0xFF << swm_cts->offset);
|
|
obj->uart->CFG &= ~CTSEN;
|
|
return;
|
|
}
|
|
if ((FlowControlRTS == type || FlowControlRTSCTS == type) && (rxflow != NC)) {
|
|
LPC_SWM->PINASSIGN[swm_rts->n] = regVal_rts | ((rxflow >> PIN_SHIFT) << swm_rts->offset);
|
|
if (FlowControlRTS == type) {
|
|
LPC_SWM->PINASSIGN[swm_cts->n] = regVal_cts | (0xFF << swm_cts->offset);
|
|
obj->uart->CFG &= ~CTSEN;
|
|
}
|
|
}
|
|
if ((FlowControlCTS == type || FlowControlRTSCTS == type) && (txflow != NC)) {
|
|
LPC_SWM->PINASSIGN[swm_cts->n] = regVal_cts | ((txflow >> PIN_SHIFT) << swm_cts->offset);
|
|
obj->uart->CFG |= CTSEN;
|
|
if (FlowControlCTS == type) {
|
|
LPC_SWM->PINASSIGN[swm_rts->n] = regVal_rts | (0xFF << swm_rts->offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|