mbed-os/targets/TARGET_NXP/TARGET_LPC82X/i2c_api.c

599 lines
18 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
#include "i2c_api.h"
#include "cmsis.h"
#include "pinmap.h"
#define LPC824_I2C0_FMPLUS 1
#if DEVICE_I2C
static const SWM_Map SWM_I2C_SDA[] = {
//PINASSIGN Register ID, Pinselect bitfield position
{ 9, 8},
{ 9, 24},
{10, 8},
};
static const SWM_Map SWM_I2C_SCL[] = {
//PINASSIGN Register ID, Pinselect bitfield position
{ 9, 16},
{10, 0},
{10, 16},
};
static int i2c_used = 0;
static uint8_t repeated_start = 0;
#define I2C_DAT(x) (x->i2c->MSTDAT)
#define I2C_STAT(x) ((x->i2c->STAT >> 1) & (0x07))
static inline void i2c_power_enable(int ch)
{
switch(ch) {
case 0:
// I2C0, Same as for LPC812
LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 5);
LPC_SYSCON->PRESETCTRL &= ~(1 << 6);
LPC_SYSCON->PRESETCTRL |= (1 << 6);
break;
case 1:
case 2:
case 3:
// I2C1,I2C2 or I2C3. Not available for LPC812
LPC_SYSCON->SYSAHBCLKCTRL |= (1 << (20 + ch));
LPC_SYSCON->PRESETCTRL &= ~(1 << (13 + ch));
LPC_SYSCON->PRESETCTRL |= (1 << (13 + ch));
break;
default:
break;
}
}
static inline void i2c_interface_enable(i2c_t *obj) {
obj->i2c->CFG |= (1 << 0); // Enable Master mode
// obj->i2c->CFG &= ~(1 << 1); // Disable Slave mode
}
static int get_available_i2c(void) {
int i;
for (i=0; i<3; i++) {
if ((i2c_used & (1 << i)) == 0)
return i+1;
}
return -1;
}
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
const SWM_Map *swm;
uint32_t regVal;
int i2c_ch = 0;
//LPC824
//I2C0 can support FM+ but only on P0_11 and P0_10
if (sda == I2C_SDA && scl == I2C_SCL) {
//Select I2C mode for P0_11 and P0_10
LPC_SWM->PINENABLE0 &= ~(0x3 << 11);
#if(LPC824_I2C0_FMPLUS == 1)
// Enable FM+ mode on P0_11, P0_10
LPC_IOCON->PIO0_10 &= ~(0x3 << 8);
LPC_IOCON->PIO0_10 |= (0x2 << 8); //FM+ mode
LPC_IOCON->PIO0_11 &= ~(0x3 << 8);
LPC_IOCON->PIO0_11 |= (0x2 << 8); //FM+ mode
#endif
}
else {
//Select any other pin for I2C1, I2C2 or I2C3
i2c_ch = get_available_i2c();
if (i2c_ch == -1)
return;
i2c_used |= (1 << (i2c_ch - 1));
swm = &SWM_I2C_SDA[i2c_ch - 1];
regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
LPC_SWM->PINASSIGN[swm->n] = regVal | ((sda >> PIN_SHIFT) << swm->offset);
swm = &SWM_I2C_SCL[i2c_ch - 1];
regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
LPC_SWM->PINASSIGN[swm->n] = regVal | ((scl >> PIN_SHIFT) << swm->offset);
}
switch(i2c_ch) {
case 0:
obj->i2c = (LPC_I2C0_Type *)LPC_I2C0;
break;
case 1:
obj->i2c = (LPC_I2C0_Type *)LPC_I2C1;
break;
case 2:
obj->i2c = (LPC_I2C0_Type *)LPC_I2C2;
break;
case 3:
obj->i2c = (LPC_I2C0_Type *)LPC_I2C3;
break;
default:
break;
}
// enable power
i2c_power_enable(i2c_ch);
// set default frequency at 100k
i2c_frequency(obj, 100000);
i2c_interface_enable(obj);
}
static inline int i2c_status(i2c_t *obj) {
return I2C_STAT(obj);
}
// Wait until the Master Serial Interrupt (SI) is set
// Timeout when it takes too long.
static int i2c_wait_SI(i2c_t *obj) {
int timeout = 0;
while (!(obj->i2c->STAT & (1 << 0))) {
timeout++;
if (timeout > 100000) return -1;
}
return 0;
}
//Attention. Spec says: First store Address in DAT before setting STA !
//Undefined state when using single byte I2C operations and too much delay
//between i2c_start and do_i2c_write(Address).
//Also note that lpc812/824 will immediately continue reading a byte when Address b0 == 1
inline int i2c_start(i2c_t *obj) {
int status = 0;
if (repeated_start) {
obj->i2c->MSTCTL = (1 << 1) | (1 << 0); // STA bit and Continue bit to complete previous RD or WR
repeated_start = 0;
} else {
obj->i2c->MSTCTL = (1 << 1); // STA bit
}
return status;
}
//Generate Stop condition and wait until bus is Idle
//Will also send NAK for previous RD
inline int i2c_stop(i2c_t *obj) {
int timeout = 0;
// STP bit and Continue bit. Sends NAK to complete previous RD
obj->i2c->MSTCTL = (1 << 2) | (1 << 0);
//Spin until Ready (b0 == 1)and Status is Idle (b3..b1 == 000)
while ((obj->i2c->STAT & ((7 << 1) | (1 << 0))) != ((0 << 1) | (1 << 0))) {
timeout ++;
if (timeout > 100000) return 1;
}
// repeated_start = 0; // bus free
return 0;
}
//Spec says: first check Idle and status is Ok
static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
// write the data
I2C_DAT(obj) = value;
if (!addr)
obj->i2c->MSTCTL = (1 << 0); //Set continue for data. Should not be set for addr since that uses STA
// wait and return status
i2c_wait_SI(obj);
return i2c_status(obj);
}
//Attention, correct Order: wait for data ready, read data, read status, continue, return
//Dont read DAT or STAT when not ready, so dont read after setting continue.
//Results may be invalid when next read is underway.
static inline int i2c_do_read(i2c_t *obj, int last) {
// wait for it to arrive
i2c_wait_SI(obj);
if (!last)
obj->i2c->MSTCTL = (1 << 0); //ACK and Continue
// return the data
return (I2C_DAT(obj) & 0xFF);
}
void i2c_frequency(i2c_t *obj, int hz) {
// No peripheral clock divider on the M0
uint32_t PCLK = SystemCoreClock;
uint32_t clkdiv = PCLK / (hz * 4) - 1;
obj->i2c->CLKDIV = clkdiv;
obj->i2c->MSTTIME = 0;
}
// The I2C does a read or a write as a whole operation
// There are two types of error conditions it can encounter
// 1) it can not obtain the bus
// 2) it gets error responses at part of the transmission
//
// We tackle them as follows:
// 1) we retry until we get the bus. we could have a "timeout" if we can not get it
// which basically turns it in to a 2)
// 2) on error, we use the standard error mechanisms to report/debug
//
// Therefore an I2C transaction should always complete. If it doesn't it is usually
// because something is setup wrong (e.g. wiring), and we don't need to programatically
// check for that
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
int count, status;
//Store the address+RD and then generate STA
I2C_DAT(obj) = address | 0x01;
i2c_start(obj);
// Wait for completion of STA and Sending of SlaveAddress+RD and first Read byte
i2c_wait_SI(obj);
status = i2c_status(obj);
if (status == 0x03) { // NAK on SlaveAddress
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
// Read in all except last byte
for (count = 0; count < (length-1); count++) {
// Wait for it to arrive, note that first byte read after address+RD is already waiting
i2c_wait_SI(obj);
status = i2c_status(obj);
if (status != 0x01) { // RX RDY
i2c_stop(obj);
return count;
}
data[count] = I2C_DAT(obj) & 0xFF; // Store read byte
obj->i2c->MSTCTL = (1 << 0); // Send ACK and Continue to read
}
// Read final byte
// Wait for it to arrive
i2c_wait_SI(obj);
status = i2c_status(obj);
if (status != 0x01) { // RX RDY
i2c_stop(obj);
return count;
}
data[count] = I2C_DAT(obj) & 0xFF; // Store final read byte
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj); // Also sends NAK for last read byte
} else {
repeated_start = 1;
}
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
int i, status;
//Store the address+/WR and then generate STA
I2C_DAT(obj) = address & 0xFE;
i2c_start(obj);
// Wait for completion of STA and Sending of SlaveAddress+/WR
i2c_wait_SI(obj);
status = i2c_status(obj);
if (status == 0x03) { // NAK SlaveAddress
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
//Write all bytes
for (i=0; i<length; i++) {
status = i2c_do_write(obj, data[i], 0);
if (status != 0x02) { // TX RDY. Handles a Slave NAK on datawrite
i2c_stop(obj);
return i;
}
}
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
} else {
repeated_start = 1;
}
return length;
}
void i2c_reset(i2c_t *obj) {
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last) {
return (i2c_do_read(obj, last) & 0xFF);
// return (i2c_do_read(obj, last, 0) & 0xFF);
}
int i2c_byte_write(i2c_t *obj, int data) {
int ack;
int status = i2c_do_write(obj, (data & 0xFF), 0);
switch(status) {
case 2: // TX RDY. Handles a Slave NAK on datawrite
ack = 1;
break;
default:
ack = 0;
break;
}
return ack;
}
#if DEVICE_I2CSLAVE
#define I2C_SLVDAT(x) (x->i2c->SLVDAT)
#define I2C_SLVSTAT(x) ((x->i2c->STAT >> 9) & (0x03))
#define I2C_SLVSI(x) ((x->i2c->STAT >> 8) & (0x01))
//#define I2C_SLVCNT(x) (x->i2c->SLVCTL = (1 << 0))
//#define I2C_SLVNAK(x) (x->i2c->SLVCTL = (1 << 1))
#if(0)
// Wait until the Slave Serial Interrupt (SI) is set
// Timeout when it takes too long.
static int i2c_wait_slave_SI(i2c_t *obj) {
int timeout = 0;
while (!(obj->i2c->STAT & (1 << 8))) {
timeout++;
if (timeout > 100000) return -1;
}
return 0;
}
#endif
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
if (enable_slave) {
// obj->i2c->CFG &= ~(1 << 0); //Disable Master mode
obj->i2c->CFG |= (1 << 1); //Enable Slave mode
}
else {
// obj->i2c->CFG |= (1 << 0); //Enable Master mode
obj->i2c->CFG &= ~(1 << 1); //Disable Slave mode
}
}
// Wait for next I2C event and find out what is going on
//
int i2c_slave_receive(i2c_t *obj) {
int addr;
// Check if there is any data pending
if (! I2C_SLVSI(obj)) {
return 0; //NoData
};
// Check State
switch(I2C_SLVSTAT(obj)) {
case 0x0: // Slave address plus R/W received
// At least one of the four slave addresses has been matched by hardware.
// You can figure out which address by checking Slave address match Index in STAT register.
// Get the received address
addr = I2C_SLVDAT(obj) & 0xFF;
// Send ACK on address and Continue
obj->i2c->SLVCTL = (1 << 0);
if (addr == 0x00) {
return 2; //WriteGeneral
}
//check the RW bit
if ((addr & 0x01) == 0x01) {
return 1; //ReadAddressed
}
else {
return 3; //WriteAddressed
}
//break;
case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
// Oops, should never get here...
obj->i2c->SLVCTL = (1 << 1); // Send NACK on received data, try to recover...
return 0; //NoData
case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
// Oops, should never get here...
I2C_SLVDAT(obj) = 0xFF; // Send dummy data for transmission
obj->i2c->SLVCTL = (1 << 0); // Continue and try to recover...
return 0; //NoData
case 0x3: // Reserved.
default: // Oops, should never get here...
obj->i2c->SLVCTL = (1 << 0); // Continue and try to recover...
return 0; //NoData
//break;
} //switch status
}
// The dedicated I2C Slave byte read and byte write functions need to be called
// from 'common' mbed I2CSlave API for devices that have separate Master and
// Slave engines such as the lpc812 and lpc1549.
//Called when Slave is addressed for Write, Slave will receive Data in polling mode
//Parameter last=1 means received byte will be NACKed.
int i2c_slave_byte_read(i2c_t *obj, int last) {
int data;
// Wait for data
while (!I2C_SLVSI(obj)); // Wait forever
//if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
// Dont bother to check State, were not returning it anyhow..
//if (I2C_SLVSTAT(obj)) == 0x01) {
// Slave receive. Received data is available (Slave Receiver mode).
//};
data = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data
if (last) {
obj->i2c->SLVCTL = (1 << 1); // Send NACK on received data and Continue
}
else {
obj->i2c->SLVCTL = (1 << 0); // Send ACK on data and Continue to read
}
return data;
}
//Called when Slave is addressed for Read, Slave will send Data in polling mode
//
int i2c_slave_byte_write(i2c_t *obj, int data) {
// Wait until Ready
while (!I2C_SLVSI(obj)); // Wait forever
// if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
// Check State
switch(I2C_SLVSTAT(obj)) {
case 0x0: // Slave address plus R/W received
// At least one of the four slave addresses has been matched by hardware.
// You can figure out which address by checking Slave address match Index in STAT register.
// I2C Restart occurred
return -1;
//break;
case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
// Should not get here...
return -2;
//break;
case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
I2C_SLVDAT(obj) = data & 0xFF; // Store the data for transmission
obj->i2c->SLVCTL = (1 << 0); // Continue to send
return 1;
//break;
case 0x3: // Reserved.
default:
// Should not get here...
return -3;
//break;
} // switch status
}
//Called when Slave is addressed for Write, Slave will receive Data in polling mode
//Parameter length (>=1) is the maximum allowable number of bytes. All bytes will be ACKed.
int i2c_slave_read(i2c_t *obj, char *data, int length) {
int count=0;
// Read and ACK all expected bytes
while (count < length) {
// Wait for data
while (!I2C_SLVSI(obj)); // Wait forever
// if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
// Check State
switch(I2C_SLVSTAT(obj)) {
case 0x0: // Slave address plus R/W received
// At least one of the four slave addresses has been matched by hardware.
// You can figure out which address by checking Slave address match Index in STAT register.
// I2C Restart occurred
return -1;
//break;
case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
data[count] = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data
obj->i2c->SLVCTL = (1 << 0); // Send ACK on data and Continue to read
break;
case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
case 0x3: // Reserved.
default: // Should never get here...
return -2;
//break;
} // switch status
count++;
} // for all bytes
return count; // Received the expected number of bytes
}
//Called when Slave is addressed for Read, Slave will send Data in polling mode
//Parameter length (>=1) is the maximum number of bytes. Exit when Slave byte is NACKed.
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
int count;
// Send and all bytes or Exit on NAK
for (count=0; count < length; count++) {
// Wait until Ready for data
while (!I2C_SLVSI(obj)); // Wait forever
// if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
// Check State
switch(I2C_SLVSTAT(obj)) {
case 0x0: // Slave address plus R/W received
// At least one of the four slave addresses has been matched by hardware.
// You can figure out which address by checking Slave address match Index in STAT register.
// I2C Restart occurred
return -1;
//break;
case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
// Should not get here...
return -2;
//break;
case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
I2C_SLVDAT(obj) = data[count] & 0xFF; // Store the data for transmission
obj->i2c->SLVCTL = (1 << 0); // Continue to send
break;
case 0x3: // Reserved.
default:
// Should not get here...
return -3;
//break;
} // switch status
} // for all bytes
return length; // Transmitted the max number of bytes
}
// Set the four slave addresses.
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
obj->i2c->SLVADR0 = (address & 0xFE); // Store address in address 0 register
obj->i2c->SLVADR1 = (0x00 & 0xFE); // Store general call write address in address 1 register
obj->i2c->SLVADR2 = (0x01); // Disable address 2 register
obj->i2c->SLVADR3 = (0x01); // Disable address 3 register
obj->i2c->SLVQUAL0 = (mask & 0xFE); // Qualifier mask for address 0 register. Any maskbit that is 1 will always be a match
}
#endif
#endif