mbed-os/targets/TARGET_Maxim/TARGET_MAX32625/rtc_api.c

259 lines
7.8 KiB
C

/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "rtc_api.h"
#include "lp_ticker_api.h"
#include "rtc.h"
#include "lp.h"
#define PRESCALE_VAL RTC_PRESCALE_DIV_2_0 // Set the divider for the 4kHz clock
#define SHIFT_AMT (RTC_PRESCALE_DIV_2_12 - PRESCALE_VAL)
#define WINDOW 1000
static int rtc_inited = 0;
static volatile uint32_t overflow_cnt = 0;
static uint64_t rtc_read64(void);
//******************************************************************************
static void overflow_handler(void)
{
overflow_cnt++;
RTC_ClearFlags(MXC_F_RTC_FLAGS_ASYNC_CLR_FLAGS);
}
//******************************************************************************
void rtc_init(void)
{
if (rtc_inited) {
return;
}
rtc_inited = 1;
overflow_cnt = 0;
/* Enable power for RTC for all LPx states */
MXC_PWRSEQ->reg0 |= (MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN |
MXC_F_PWRSEQ_REG0_PWR_RTCEN_SLP);
/* Enable clock to synchronizers */
CLKMAN_SetClkScale(CLKMAN_CLK_SYNC, CLKMAN_SCALE_DIV_1);
// Prepare interrupt handlers
NVIC_SetVector(RTC0_IRQn, (uint32_t)lp_ticker_irq_handler);
NVIC_EnableIRQ(RTC0_IRQn);
NVIC_SetVector(RTC3_IRQn, (uint32_t)overflow_handler);
NVIC_EnableIRQ(RTC3_IRQn);
// Enable wakeup on RTC rollover
LP_ConfigRTCWakeUp(0, 0, 0, 1);
/* RTC registers are only reset on a power cycle. Do not reconfigure the RTC
* if it is already running.
*/
if (!RTC_IsActive()) {
rtc_cfg_t cfg = {0};
cfg.prescaler = PRESCALE_VAL;
cfg.snoozeMode = RTC_SNOOZE_DISABLE;
int retval = RTC_Init(&cfg);
MBED_ASSERT(retval == E_NO_ERROR);
RTC_EnableINT(MXC_F_RTC_FLAGS_OVERFLOW);
RTC_Start();
}
}
//******************************************************************************
void lp_ticker_init(void)
{
rtc_init();
}
//******************************************************************************
void rtc_free(void)
{
if (RTC_IsActive()) {
// Clear and disable RTC
MXC_RTCTMR->ctrl |= MXC_F_RTC_CTRL_CLEAR;
RTC_Stop();
}
}
//******************************************************************************
int rtc_isenabled(void)
{
return RTC_IsActive();
}
//******************************************************************************
time_t rtc_read(void)
{
uint32_t ovf_cnt_1, ovf_cnt_2, timer_cnt;
uint32_t ovf1, ovf2;
// Make sure RTC is setup before trying to read
if (!rtc_inited) {
rtc_init();
}
// Ensure coherency between overflow_cnt and timer
do {
ovf_cnt_1 = overflow_cnt;
ovf1 = RTC_GetFlags() & MXC_F_RTC_FLAGS_OVERFLOW;
timer_cnt = RTC_GetCount();
ovf2 = RTC_GetFlags() & MXC_F_RTC_FLAGS_OVERFLOW;
ovf_cnt_2 = overflow_cnt;
} while ((ovf_cnt_1 != ovf_cnt_2) || (ovf1 != ovf2));
// Account for an unserviced interrupt
if (ovf1) {
ovf_cnt_1++;
}
return (timer_cnt >> SHIFT_AMT) + (ovf_cnt_1 << (32 - SHIFT_AMT));
}
//******************************************************************************
static uint64_t rtc_read64(void)
{
uint32_t ovf_cnt_1, ovf_cnt_2, timer_cnt;
uint32_t ovf1, ovf2;
uint64_t current_us;
// Make sure RTC is setup before trying to read
if (!rtc_inited) {
rtc_init();
}
// Ensure coherency between overflow_cnt and timer
do {
ovf_cnt_1 = overflow_cnt;
ovf1 = RTC_GetFlags() & MXC_F_RTC_FLAGS_OVERFLOW;
timer_cnt = RTC_GetCount();
ovf2 = RTC_GetFlags() & MXC_F_RTC_FLAGS_OVERFLOW;
ovf_cnt_2 = overflow_cnt;
} while ((ovf_cnt_1 != ovf_cnt_2) || (ovf1 != ovf2));
// Account for an unserviced interrupt
if (ovf1) {
ovf_cnt_1++;
}
current_us = (((uint64_t)timer_cnt * 1000000) >> SHIFT_AMT) + (((uint64_t)ovf_cnt_1 * 1000000) << (32 - SHIFT_AMT));
return current_us;
}
//******************************************************************************
void rtc_write(time_t t)
{
// Make sure RTC is setup before accessing
if (!rtc_inited) {
rtc_init();
}
RTC_Stop();
RTC_SetCount(t << SHIFT_AMT);
overflow_cnt = t >> (32 - SHIFT_AMT);
RTC_Start();
}
//******************************************************************************
void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint32_t comp_value;
uint64_t curr_ts64;
uint64_t ts64;
// Note: interrupts are disabled before this function is called.
// Disable the alarm while it is prepared
RTC_DisableINT(MXC_F_RTC_INTEN_COMP0);
curr_ts64 = rtc_read64();
ts64 = (uint64_t)timestamp | (curr_ts64 & 0xFFFFFFFF00000000ULL);
// If this event is older than a recent window, it must be in the future
if ((ts64 < (curr_ts64 - WINDOW)) && ((curr_ts64 - WINDOW) < curr_ts64)) {
ts64 += 0x100000000ULL;
}
uint32_t timer = RTC_GetCount();
if (ts64 <= curr_ts64) {
// This event has already occurred. Set the alarm to expire immediately.
comp_value = timer + 1;
} else {
comp_value = (ts64 << SHIFT_AMT) / 1000000;
}
// Ensure that the compare value is far enough in the future to guarantee the interrupt occurs.
if ((comp_value < (timer + 2)) && (comp_value > (timer - 10))) {
comp_value = timer + 2;
}
MXC_RTCTMR->comp[0] = comp_value;
MXC_RTCTMR->flags = MXC_F_RTC_FLAGS_ASYNC_CLR_FLAGS;
RTC_EnableINT(MXC_F_RTC_INTEN_COMP0);
// Enable wakeup from RTC
LP_ConfigRTCWakeUp(1, 0, 0, 1);
// Wait for pending transactions
while (MXC_RTCTMR->ctrl & MXC_F_RTC_CTRL_PENDING);
}
void lp_ticker_fire_interrupt(void)
{
NVIC_SetPendingIRQ(RTC0_IRQn);
}
//******************************************************************************
inline void lp_ticker_disable_interrupt(void)
{
RTC_DisableINT(MXC_F_RTC_INTEN_COMP0);
}
//******************************************************************************
inline void lp_ticker_clear_interrupt(void)
{
RTC_ClearFlags(MXC_F_RTC_FLAGS_ASYNC_CLR_FLAGS);
}
//******************************************************************************
inline uint32_t lp_ticker_read(void)
{
return rtc_read64();
}