mbed-os/targets/TARGET_Freescale/TARGET_K20XX/spi_api.c

170 lines
5.4 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2015 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "spi_api.h"
#include <math.h>
#include "cmsis.h"
#include "pinmap.h"
#include "clk_freqs.h"
#include "PeripheralPins.h"
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->spi = (SPI_Type*)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj->spi != NC);
SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK;
SIM->SCGC6 |= SIM_SCGC6_SPI0_MASK;
obj->spi->MCR &= ~(SPI_MCR_MDIS_MASK | SPI_MCR_HALT_MASK);
//obj->spi->MCR |= SPI_MCR_DIS_RXF_MASK | SPI_MCR_DIS_TXF_MASK;
// not halt in the debug mode
obj->spi->SR |= SPI_SR_EOQF_MASK;
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj) {
// [TODO]
}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
MBED_ASSERT((bits > 4) || (bits < 16));
MBED_ASSERT((mode >= 0) && (mode <= 3));
uint8_t polarity = (mode & 0x2) ? 1 : 0;
uint8_t phase = (mode & 0x1) ? 1 : 0;
uint8_t old_polarity = (obj->spi->CTAR[0] & SPI_CTAR_CPOL_MASK) != 0;
// set master/slave
if (slave) {
obj->spi->MCR &= ~SPI_MCR_MSTR_MASK;
} else {
obj->spi->MCR |= (1UL << SPI_MCR_MSTR_SHIFT);
}
// CTAR0 is used
obj->spi->CTAR[0] &= ~(SPI_CTAR_CPHA_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_FMSZ_MASK);
obj->spi->CTAR[0] |= (polarity << SPI_CTAR_CPOL_SHIFT) | (phase << SPI_CTAR_CPHA_SHIFT) | ((bits - 1) << SPI_CTAR_FMSZ_SHIFT);
//If clk idle state was changed, start a dummy transmission
//This is a 'feature' in DSPI: https://community.freescale.com/thread/105526
if ((old_polarity != polarity) && (slave == 0)) {
//Start transfer (CS should be high, so shouldn't matter)
spi_master_write(obj, 0xFFFF);
}
}
static const uint8_t baudrate_prescaler[] = {2,3,5,7};
static const uint16_t baudrate_scaler[] = {2,4,6,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768};
void spi_frequency(spi_t *obj, int hz) {
uint32_t f_error = 0;
uint32_t p_error = 0xffffffff;
uint32_t ref = 0;
uint32_t br = 0;
uint32_t ref_spr = 0;
uint32_t ref_prescaler = 0;
uint32_t ref_dr = 0;
// bus clk
uint32_t PCLK = bus_frequency();
for (uint32_t i = 0; i < 4; i++) {
for (br = 0; br <= 15; br++) {
for (uint32_t dr = 0; dr < 2; dr++) {
ref = (PCLK * (1U + dr) / baudrate_prescaler[i]) / baudrate_scaler[br];
if (ref > (uint32_t)hz)
continue;
f_error = hz - ref;
if (f_error < p_error) {
ref_spr = br;
ref_prescaler = i;
ref_dr = dr;
p_error = f_error;
}
}
}
}
// set PBR and BR
obj->spi->CTAR[0] &= ~(SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK | SPI_CTAR_DBR_MASK);
obj->spi->CTAR[0] |= (ref_prescaler << SPI_CTAR_PBR_SHIFT) | (ref_spr << SPI_CTAR_BR_SHIFT) | (ref_dr << SPI_CTAR_DBR_SHIFT);
}
static inline int spi_writeable(spi_t *obj) {
return (obj->spi->SR & SPI_SR_TFFF_MASK) ? 1 : 0;
}
static inline int spi_readable(spi_t *obj) {
return (obj->spi->SR & SPI_SR_RFDF_MASK) ? 1 : 0;
}
int spi_master_write(spi_t *obj, int value) {
//clear RX buffer flag
obj->spi->SR |= SPI_SR_RFDF_MASK;
// wait tx buffer empty
while(!spi_writeable(obj));
obj->spi->PUSHR = SPI_PUSHR_TXDATA(value & 0xffff) /*| SPI_PUSHR_EOQ_MASK*/;
// wait rx buffer full
while (!spi_readable(obj));
return obj->spi->POPR;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill) {
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj) {
return spi_readable(obj);
}
int spi_slave_read(spi_t *obj) {
obj->spi->SR |= SPI_SR_RFDF_MASK;
return obj->spi->POPR;
}
void spi_slave_write(spi_t *obj, int value) {
while (!spi_writeable(obj));
}