mirror of https://github.com/ARMmbed/mbed-os.git
847 lines
26 KiB
C
847 lines
26 KiB
C
/*
|
|
* FIPS-197 compliant AES implementation
|
|
*
|
|
* Copyright (C) 2006-2019, ARM Limited, All Rights Reserved
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Copyright (C) 2006-2019 STMicroelectronics, All Rights Reserved
|
|
*
|
|
* This file implements ST AES HW services based on API from mbed TLS
|
|
*
|
|
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
|
*
|
|
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
|
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
|
*/
|
|
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "mbedtls/aes.h"
|
|
|
|
#if defined(MBEDTLS_AES_C)
|
|
#if defined(MBEDTLS_AES_ALT)
|
|
#include "mbedtls/platform_util.h"
|
|
#include <string.h>
|
|
|
|
/* Parameter validation macros based on platform_util.h */
|
|
#define AES_VALIDATE_RET( cond ) \
|
|
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_AES_BAD_INPUT_DATA )
|
|
#define AES_VALIDATE( cond ) \
|
|
MBEDTLS_INTERNAL_VALIDATE( cond )
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
#define TIMEOUT_VALUE 0xFF
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
#define SWAP_B32_TO_B8(b32,b8,i) \
|
|
{ \
|
|
(b8)[(i) + 3] = (unsigned char) ( ( (b32) ) & 0xFF ); \
|
|
(b8)[(i) + 2] = (unsigned char) ( ( (b32) >> 8 ) & 0xFF ); \
|
|
(b8)[(i) + 1] = (unsigned char) ( ( (b32) >> 16 ) & 0xFF ); \
|
|
(b8)[(i) ] = (unsigned char) ( ( (b32) >> 24 ) & 0xFF ); \
|
|
}
|
|
|
|
#define SWAP_B8_TO_B32(b32,b8,i) \
|
|
{ \
|
|
(b32) = ( (uint32_t) (b8)[(i) + 3] ) \
|
|
| ( (uint32_t) (b8)[(i) + 2] << 8 ) \
|
|
| ( (uint32_t) (b8)[(i) + 1] << 16 ) \
|
|
| ( (uint32_t) (b8)[(i) ] << 24 ); \
|
|
}
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/* Private functions ---------------------------------------------------------*/
|
|
static int aes_set_key(mbedtls_aes_context *ctx,
|
|
const unsigned char *key,
|
|
unsigned int keybits)
|
|
{
|
|
/* Deinitializes the CRYP peripheral */
|
|
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) == HAL_ERROR) {
|
|
return (HAL_ERROR);
|
|
}
|
|
|
|
switch (keybits) {
|
|
case 128:
|
|
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_128B;;
|
|
|
|
SWAP_B8_TO_B32(ctx->aes_key[0], key, 0);
|
|
SWAP_B8_TO_B32(ctx->aes_key[1], key, 4);
|
|
SWAP_B8_TO_B32(ctx->aes_key[2], key, 8);
|
|
SWAP_B8_TO_B32(ctx->aes_key[3], key, 12);
|
|
|
|
break;
|
|
case 192:
|
|
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_192B;
|
|
|
|
SWAP_B8_TO_B32(ctx->aes_key[0], key, 0);
|
|
SWAP_B8_TO_B32(ctx->aes_key[1], key, 4);
|
|
SWAP_B8_TO_B32(ctx->aes_key[2], key, 8);
|
|
SWAP_B8_TO_B32(ctx->aes_key[3], key, 12);
|
|
SWAP_B8_TO_B32(ctx->aes_key[4], key, 16);
|
|
SWAP_B8_TO_B32(ctx->aes_key[5], key, 20);
|
|
|
|
break;
|
|
|
|
case 256:
|
|
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_256B;
|
|
|
|
SWAP_B8_TO_B32(ctx->aes_key[0], key, 0);
|
|
SWAP_B8_TO_B32(ctx->aes_key[1], key, 4);
|
|
SWAP_B8_TO_B32(ctx->aes_key[2], key, 8);
|
|
SWAP_B8_TO_B32(ctx->aes_key[3], key, 12);
|
|
SWAP_B8_TO_B32(ctx->aes_key[4], key, 16);
|
|
SWAP_B8_TO_B32(ctx->aes_key[5], key, 20);
|
|
SWAP_B8_TO_B32(ctx->aes_key[6], key, 24);
|
|
SWAP_B8_TO_B32(ctx->aes_key[7], key, 28);
|
|
|
|
break;
|
|
default :
|
|
return (MBEDTLS_ERR_AES_INVALID_KEY_LENGTH);
|
|
}
|
|
|
|
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
|
|
ctx->hcryp_aes.Instance = CRYP;
|
|
ctx->hcryp_aes.Init.pKey = ctx->aes_key;
|
|
|
|
/* Enable CRYP clock */
|
|
__HAL_RCC_CRYP_CLK_ENABLE();
|
|
|
|
if (HAL_CRYP_Init(&ctx->hcryp_aes) == HAL_ERROR) {
|
|
return (HAL_ERROR);
|
|
}
|
|
|
|
/* allow multi-instance of CRYP use: save context for CRYP HW module CR */
|
|
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
|
|
return (0);
|
|
|
|
}
|
|
|
|
/* Implementation that should never be optimized out by the compiler */
|
|
static void mbedtls_zeroize(void *v, size_t n)
|
|
{
|
|
volatile unsigned char *p = (unsigned char *)v;
|
|
while (n--) {
|
|
*p++ = 0;
|
|
}
|
|
}
|
|
|
|
void mbedtls_aes_init(mbedtls_aes_context *ctx)
|
|
{
|
|
AES_VALIDATE(ctx != NULL);
|
|
|
|
memset(ctx, 0, sizeof(mbedtls_aes_context));
|
|
}
|
|
|
|
|
|
void mbedtls_aes_free(mbedtls_aes_context *ctx)
|
|
{
|
|
|
|
if (ctx == NULL) {
|
|
return;
|
|
}
|
|
/* Force the CRYP Periheral Clock Reset */
|
|
__HAL_RCC_CRYP_FORCE_RESET();
|
|
|
|
/* Release the CRYP Periheral Clock Reset */
|
|
__HAL_RCC_CRYP_RELEASE_RESET();
|
|
|
|
mbedtls_zeroize(ctx, sizeof(mbedtls_aes_context));
|
|
}
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_XTS)
|
|
void mbedtls_aes_xts_init(mbedtls_aes_xts_context *ctx)
|
|
{
|
|
AES_VALIDATE(ctx != NULL);
|
|
|
|
mbedtls_aes_init(&ctx->crypt);
|
|
mbedtls_aes_init(&ctx->tweak);
|
|
}
|
|
|
|
void mbedtls_aes_xts_free(mbedtls_aes_xts_context *ctx)
|
|
{
|
|
if (ctx == NULL) {
|
|
return;
|
|
}
|
|
|
|
mbedtls_aes_free(&ctx->crypt);
|
|
mbedtls_aes_free(&ctx->tweak);
|
|
}
|
|
#endif /* MBEDTLS_CIPHER_MODE_XTS */
|
|
|
|
/*
|
|
* AES key schedule (encryption)
|
|
*/
|
|
int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key,
|
|
unsigned int keybits)
|
|
{
|
|
int ret_val = 0;
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(key != NULL);
|
|
|
|
ret_val = aes_set_key(ctx, key, keybits);
|
|
return (ret_val);
|
|
}
|
|
|
|
/*
|
|
* AES key schedule (decryption)
|
|
*/
|
|
int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
|
|
unsigned int keybits)
|
|
{
|
|
int ret_val = 0;
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(key != NULL);
|
|
|
|
ret_val = aes_set_key(ctx, key, keybits);
|
|
return (ret_val);
|
|
}
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_XTS)
|
|
static int mbedtls_aes_xts_decode_keys(const unsigned char *key,
|
|
unsigned int keybits,
|
|
const unsigned char **key1,
|
|
unsigned int *key1bits,
|
|
const unsigned char **key2,
|
|
unsigned int *key2bits)
|
|
{
|
|
const unsigned int half_keybits = keybits / 2;
|
|
const unsigned int half_keybytes = half_keybits / 8;
|
|
|
|
switch (keybits) {
|
|
case 256:
|
|
break;
|
|
case 512:
|
|
break;
|
|
default :
|
|
return (MBEDTLS_ERR_AES_INVALID_KEY_LENGTH);
|
|
}
|
|
|
|
*key1bits = half_keybits;
|
|
*key2bits = half_keybits;
|
|
*key1 = &key[0];
|
|
*key2 = &key[half_keybytes];
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mbedtls_aes_xts_setkey_enc(mbedtls_aes_xts_context *ctx,
|
|
const unsigned char *key,
|
|
unsigned int keybits)
|
|
{
|
|
int ret;
|
|
const unsigned char *key1, *key2;
|
|
unsigned int key1bits, key2bits;
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(key != NULL);
|
|
|
|
ret = mbedtls_aes_xts_decode_keys(key, keybits, &key1, &key1bits,
|
|
&key2, &key2bits);
|
|
if (ret != 0) {
|
|
return (ret);
|
|
}
|
|
|
|
/* Set the tweak key. Always set tweak key for the encryption mode. */
|
|
ret = mbedtls_aes_setkey_enc(&ctx->tweak, key2, key2bits);
|
|
if (ret != 0) {
|
|
return (ret);
|
|
}
|
|
|
|
/* Set crypt key for encryption. */
|
|
return mbedtls_aes_setkey_enc(&ctx->crypt, key1, key1bits);
|
|
}
|
|
|
|
int mbedtls_aes_xts_setkey_dec(mbedtls_aes_xts_context *ctx,
|
|
const unsigned char *key,
|
|
unsigned int keybits)
|
|
{
|
|
int ret;
|
|
const unsigned char *key1, *key2;
|
|
unsigned int key1bits, key2bits;
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(key != NULL);
|
|
|
|
ret = mbedtls_aes_xts_decode_keys(key, keybits, &key1, &key1bits,
|
|
&key2, &key2bits);
|
|
if (ret != 0) {
|
|
return (ret);
|
|
}
|
|
|
|
/* Set the tweak key. Always set tweak key for encryption. */
|
|
ret = mbedtls_aes_setkey_enc(&ctx->tweak, key2, key2bits);
|
|
if (ret != 0) {
|
|
return (ret);
|
|
}
|
|
|
|
/* Set crypt key for decryption. */
|
|
return mbedtls_aes_setkey_dec(&ctx->crypt, key1, key1bits);
|
|
}
|
|
#endif /* MBEDTLS_CIPHER_MODE_XTS */
|
|
|
|
/*
|
|
* AES-ECB block encryption/decryption
|
|
*/
|
|
int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
|
|
int mode,
|
|
const unsigned char input[16],
|
|
unsigned char output[16])
|
|
{
|
|
int ret;
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(input != NULL);
|
|
AES_VALIDATE_RET(output != NULL);
|
|
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
|
|
mode == MBEDTLS_AES_DECRYPT);
|
|
|
|
/* allow multi-instance of CRYP use: restore context for CRYP hw module */
|
|
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
|
|
|
|
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
|
|
ctx->hcryp_aes.Init.pKey = ctx->aes_key;
|
|
|
|
/* Set the Algo if not configured till now */
|
|
if (CRYP_AES_ECB != ctx->hcryp_aes.Init.Algorithm) {
|
|
ctx->hcryp_aes.Init.Algorithm = CRYP_AES_ECB;
|
|
|
|
/* Configure the CRYP */
|
|
HAL_CRYP_SetConfig(&ctx->hcryp_aes, &ctx->hcryp_aes.Init);
|
|
}
|
|
|
|
if (mode == MBEDTLS_AES_DECRYPT) { /* AES decryption */
|
|
ret = mbedtls_internal_aes_decrypt(ctx, input, output);
|
|
if (ret) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
} else { /* AES encryption */
|
|
ret = mbedtls_internal_aes_encrypt(ctx, input, output);
|
|
if (ret) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
}
|
|
/* allow multi-instance of CRYP use: save context for CRYP HW module CR */
|
|
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_CBC)
|
|
/*
|
|
* AES-CBC buffer encryption/decryption
|
|
*/
|
|
static int st_cbc_restore_context(mbedtls_aes_context *ctx)
|
|
{
|
|
/* allow multi-instance of CRYP use: restore context for CRYP hw module */
|
|
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
|
|
/* Re-initialize AES processor with proper parameters
|
|
and (re-)apply key and IV for multi context usecases */
|
|
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) != HAL_OK) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
if (HAL_CRYP_Init(&ctx->hcryp_aes) != HAL_OK) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int mbedtls_aes_crypt_cbc(mbedtls_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t *iv_ptr = (uint32_t *)&iv[0];
|
|
|
|
ALIGN_32BYTES(static uint32_t iv_32B[4]);
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
|
|
mode == MBEDTLS_AES_DECRYPT);
|
|
AES_VALIDATE_RET(iv != NULL);
|
|
AES_VALIDATE_RET(input != NULL);
|
|
AES_VALIDATE_RET(output != NULL);
|
|
|
|
if (length % 16) {
|
|
return (MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH);
|
|
}
|
|
|
|
if (st_cbc_restore_context(ctx) != 0) {
|
|
return (ST_ERR_AES_BUSY);
|
|
}
|
|
|
|
/* Set the Algo if not configured till now */
|
|
if (CRYP_AES_CBC != ctx->hcryp_aes.Init.Algorithm) {
|
|
ctx->hcryp_aes.Init.Algorithm = CRYP_AES_CBC;
|
|
}
|
|
|
|
if (mode == MBEDTLS_AES_DECRYPT) {
|
|
ctx->hcryp_aes.Init.pInitVect = (uint32_t *)&iv[0];
|
|
|
|
/* reconfigure the CRYP */
|
|
HAL_CRYP_SetConfig(&ctx->hcryp_aes, &ctx->hcryp_aes.Init);
|
|
|
|
if (HAL_CRYP_Decrypt(&ctx->hcryp_aes, (uint32_t *)input, length / 4, (uint32_t *)output, TIMEOUT_VALUE) != HAL_OK) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
|
|
/* Save the internal IV vector for multi context purpose */
|
|
tickstart = HAL_GetTick();
|
|
while ((ctx->hcryp_aes.Instance->SR & (CRYP_SR_IFEM | CRYP_SR_OFNE | CRYP_SR_BUSY)) != CRYP_SR_IFEM) {
|
|
if ((HAL_GetTick() - tickstart) > ST_AES_TIMEOUT) {
|
|
return ST_ERR_AES_BUSY; // timeout: CRYP processor is busy
|
|
}
|
|
}
|
|
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR; // save here before overwritten
|
|
ctx->hcryp_aes.Instance->CR &= ~CRYP_CR_CRYPEN;
|
|
*iv_ptr++ = ctx->hcryp_aes.Instance->IV0LR;
|
|
*iv_ptr++ = ctx->hcryp_aes.Instance->IV0RR;
|
|
*iv_ptr++ = ctx->hcryp_aes.Instance->IV1LR;
|
|
*iv_ptr++ = ctx->hcryp_aes.Instance->IV1RR;
|
|
} else {
|
|
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
|
|
ctx->hcryp_aes.Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_BYTE;
|
|
|
|
SWAP_B8_TO_B32(iv_32B[0], iv, 0);
|
|
SWAP_B8_TO_B32(iv_32B[1], iv, 4);
|
|
SWAP_B8_TO_B32(iv_32B[2], iv, 8);
|
|
SWAP_B8_TO_B32(iv_32B[3], iv, 12);
|
|
|
|
ctx->hcryp_aes.Init.pInitVect = iv_32B;
|
|
|
|
/* reconfigure the CRYP */
|
|
HAL_CRYP_SetConfig(&ctx->hcryp_aes, &ctx->hcryp_aes.Init);
|
|
|
|
if (HAL_CRYP_Encrypt(&ctx->hcryp_aes, (uint32_t *)input, length, (uint32_t *)output, TIMEOUT_VALUE) != HAL_OK) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
|
|
memcpy(iv, output, 16); /* current output is the IV vector for the next call */
|
|
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* MBEDTLS_CIPHER_MODE_CBC */
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_XTS)
|
|
|
|
/* Endianess with 64 bits values */
|
|
#ifndef GET_UINT64_LE
|
|
#define GET_UINT64_LE(n,b,i) \
|
|
{ \
|
|
(n) = ( (uint64_t) (b)[(i) + 7] << 56 ) \
|
|
| ( (uint64_t) (b)[(i) + 6] << 48 ) \
|
|
| ( (uint64_t) (b)[(i) + 5] << 40 ) \
|
|
| ( (uint64_t) (b)[(i) + 4] << 32 ) \
|
|
| ( (uint64_t) (b)[(i) + 3] << 24 ) \
|
|
| ( (uint64_t) (b)[(i) + 2] << 16 ) \
|
|
| ( (uint64_t) (b)[(i) + 1] << 8 ) \
|
|
| ( (uint64_t) (b)[(i) ] ); \
|
|
}
|
|
#endif
|
|
|
|
#ifndef PUT_UINT64_LE
|
|
#define PUT_UINT64_LE(n,b,i) \
|
|
{ \
|
|
(b)[(i) + 7] = (unsigned char) ( (n) >> 56 ); \
|
|
(b)[(i) + 6] = (unsigned char) ( (n) >> 48 ); \
|
|
(b)[(i) + 5] = (unsigned char) ( (n) >> 40 ); \
|
|
(b)[(i) + 4] = (unsigned char) ( (n) >> 32 ); \
|
|
(b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \
|
|
(b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \
|
|
(b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \
|
|
(b)[(i) ] = (unsigned char) ( (n) ); \
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* GF(2^128) multiplication function
|
|
*
|
|
* This function multiplies a field element by x in the polynomial field
|
|
* representation. It uses 64-bit word operations to gain speed but compensates
|
|
* for machine endianess and hence works correctly on both big and little
|
|
* endian machines.
|
|
*/
|
|
static void mbedtls_gf128mul_x_ble(unsigned char r[16],
|
|
const unsigned char x[16])
|
|
{
|
|
uint64_t a, b, ra, rb;
|
|
|
|
GET_UINT64_LE(a, x, 0);
|
|
GET_UINT64_LE(b, x, 8);
|
|
|
|
ra = (a << 1) ^ 0x0087 >> (8 - ((b >> 63) << 3));
|
|
rb = (a >> 63) | (b << 1);
|
|
|
|
PUT_UINT64_LE(ra, r, 0);
|
|
PUT_UINT64_LE(rb, r, 8);
|
|
}
|
|
|
|
/*
|
|
* AES-XTS buffer encryption/decryption
|
|
*/
|
|
int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
const unsigned char data_unit[16],
|
|
const unsigned char *input,
|
|
unsigned char *output)
|
|
{
|
|
int ret;
|
|
size_t blocks = length / 16;
|
|
size_t leftover = length % 16;
|
|
unsigned char tweak[16];
|
|
unsigned char prev_tweak[16];
|
|
unsigned char tmp[16];
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
|
|
mode == MBEDTLS_AES_DECRYPT);
|
|
AES_VALIDATE_RET(data_unit != NULL);
|
|
AES_VALIDATE_RET(input != NULL);
|
|
AES_VALIDATE_RET(output != NULL);
|
|
|
|
/* Data units must be at least 16 bytes long. */
|
|
if (length < 16) {
|
|
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
|
|
}
|
|
|
|
/* NIST SP 800-38E disallows data units larger than 2**20 blocks. */
|
|
if (length > (1 << 20) * 16) {
|
|
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
|
|
}
|
|
|
|
/* Compute the tweak. */
|
|
ret = mbedtls_aes_crypt_ecb(&ctx->tweak, MBEDTLS_AES_ENCRYPT,
|
|
data_unit, tweak);
|
|
if (ret != 0) {
|
|
return (ret);
|
|
}
|
|
|
|
while (blocks--) {
|
|
size_t i;
|
|
|
|
if (leftover && (mode == MBEDTLS_AES_DECRYPT) && blocks == 0) {
|
|
/* We are on the last block in a decrypt operation that has
|
|
* leftover bytes, so we need to use the next tweak for this block,
|
|
* and this tweak for the lefover bytes. Save the current tweak for
|
|
* the leftovers and then update the current tweak for use on this,
|
|
* the last full block. */
|
|
memcpy(prev_tweak, tweak, sizeof(tweak));
|
|
mbedtls_gf128mul_x_ble(tweak, tweak);
|
|
}
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
tmp[i] = input[i] ^ tweak[i];
|
|
}
|
|
|
|
ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
|
|
if (ret != 0) {
|
|
return (ret);
|
|
}
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
output[i] = tmp[i] ^ tweak[i];
|
|
}
|
|
|
|
/* Update the tweak for the next block. */
|
|
mbedtls_gf128mul_x_ble(tweak, tweak);
|
|
|
|
output += 16;
|
|
input += 16;
|
|
}
|
|
|
|
if (leftover) {
|
|
/* If we are on the leftover bytes in a decrypt operation, we need to
|
|
* use the previous tweak for these bytes (as saved in prev_tweak). */
|
|
unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak;
|
|
|
|
/* We are now on the final part of the data unit, which doesn't divide
|
|
* evenly by 16. It's time for ciphertext stealing. */
|
|
size_t i;
|
|
unsigned char *prev_output = output - 16;
|
|
|
|
/* Copy ciphertext bytes from the previous block to our output for each
|
|
* byte of cyphertext we won't steal. At the same time, copy the
|
|
* remainder of the input for this final round (since the loop bounds
|
|
* are the same). */
|
|
for (i = 0; i < leftover; i++) {
|
|
output[i] = prev_output[i];
|
|
tmp[i] = input[i] ^ t[i];
|
|
}
|
|
|
|
/* Copy ciphertext bytes from the previous block for input in this
|
|
* round. */
|
|
for (; i < 16; i++) {
|
|
tmp[i] = prev_output[i] ^ t[i];
|
|
}
|
|
|
|
ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Write the result back to the previous block, overriding the previous
|
|
* output we copied. */
|
|
for (i = 0; i < 16; i++) {
|
|
prev_output[i] = tmp[i] ^ t[i];
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
#endif /* MBEDTLS_CIPHER_MODE_XTS */
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_CFB)
|
|
/*
|
|
* AES-CFB128 buffer encryption/decryption
|
|
*/
|
|
int mbedtls_aes_crypt_cfb128(mbedtls_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
size_t *iv_off,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output)
|
|
{
|
|
int c;
|
|
size_t n;
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
|
|
mode == MBEDTLS_AES_DECRYPT);
|
|
AES_VALIDATE_RET(iv_off != NULL);
|
|
AES_VALIDATE_RET(iv != NULL);
|
|
AES_VALIDATE_RET(input != NULL);
|
|
AES_VALIDATE_RET(output != NULL);
|
|
|
|
n = *iv_off;
|
|
|
|
if (mode == MBEDTLS_AES_DECRYPT) {
|
|
while (length--) {
|
|
if (n == 0)
|
|
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
|
|
c = *input++;
|
|
*output++ = (unsigned char)(c ^ iv[n]);
|
|
iv[n] = (unsigned char) c;
|
|
|
|
n = (n + 1) & 0x0F;
|
|
}
|
|
} else {
|
|
while (length--) {
|
|
if (n == 0)
|
|
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
|
|
iv[n] = *output++ = (unsigned char)(iv[n] ^ *input++);
|
|
|
|
n = (n + 1) & 0x0F;
|
|
}
|
|
}
|
|
|
|
*iv_off = n;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* AES-CFB8 buffer encryption/decryption
|
|
*/
|
|
int mbedtls_aes_crypt_cfb8(mbedtls_aes_context *ctx,
|
|
int mode,
|
|
size_t length,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output)
|
|
{
|
|
unsigned char c;
|
|
unsigned char ov[17];
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
|
|
mode == MBEDTLS_AES_DECRYPT);
|
|
AES_VALIDATE_RET(iv != NULL);
|
|
AES_VALIDATE_RET(input != NULL);
|
|
AES_VALIDATE_RET(output != NULL);
|
|
|
|
while (length--) {
|
|
memcpy(ov, iv, 16);
|
|
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
|
|
if (mode == MBEDTLS_AES_DECRYPT) {
|
|
ov[16] = *input;
|
|
}
|
|
|
|
c = *output++ = (unsigned char)(iv[0] ^ *input++);
|
|
|
|
if (mode == MBEDTLS_AES_ENCRYPT) {
|
|
ov[16] = c;
|
|
}
|
|
|
|
memcpy(iv, ov + 1, 16);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#endif /*MBEDTLS_CIPHER_MODE_CFB */
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_OFB)
|
|
/*
|
|
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
|
|
*/
|
|
int mbedtls_aes_crypt_ofb(mbedtls_aes_context *ctx,
|
|
size_t length,
|
|
size_t *iv_off,
|
|
unsigned char iv[16],
|
|
const unsigned char *input,
|
|
unsigned char *output)
|
|
{
|
|
int ret = 0;
|
|
size_t n;
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(iv_off != NULL);
|
|
AES_VALIDATE_RET(iv != NULL);
|
|
AES_VALIDATE_RET(input != NULL);
|
|
AES_VALIDATE_RET(output != NULL);
|
|
|
|
n = *iv_off;
|
|
|
|
if (n > 15) {
|
|
return (MBEDTLS_ERR_AES_BAD_INPUT_DATA);
|
|
}
|
|
|
|
while (length--) {
|
|
if (n == 0) {
|
|
ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
|
|
if (ret != 0) {
|
|
goto exit;
|
|
}
|
|
}
|
|
*output++ = *input++ ^ iv[n];
|
|
|
|
n = (n + 1) & 0x0F;
|
|
}
|
|
|
|
*iv_off = n;
|
|
|
|
exit:
|
|
return (ret);
|
|
}
|
|
#endif /* MBEDTLS_CIPHER_MODE_OFB */
|
|
|
|
#if defined(MBEDTLS_CIPHER_MODE_CTR)
|
|
/*
|
|
* AES-CTR buffer encryption/decryption
|
|
*/
|
|
int mbedtls_aes_crypt_ctr(mbedtls_aes_context *ctx,
|
|
size_t length,
|
|
size_t *nc_off,
|
|
unsigned char nonce_counter[16],
|
|
unsigned char stream_block[16],
|
|
const unsigned char *input,
|
|
unsigned char *output)
|
|
{
|
|
int c, i;
|
|
size_t n;
|
|
|
|
AES_VALIDATE_RET(ctx != NULL);
|
|
AES_VALIDATE_RET(nc_off != NULL);
|
|
AES_VALIDATE_RET(nonce_counter != NULL);
|
|
AES_VALIDATE_RET(stream_block != NULL);
|
|
AES_VALIDATE_RET(input != NULL);
|
|
AES_VALIDATE_RET(output != NULL);
|
|
|
|
n = *nc_off;
|
|
|
|
while (length--) {
|
|
if (n == 0) {
|
|
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, nonce_counter, stream_block) != 0) {
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
|
|
for (i = 16; i > 0; i--)
|
|
if (++nonce_counter[i - 1] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
c = *input++;
|
|
*output++ = (unsigned char)(c ^ stream_block[n]);
|
|
|
|
n = (n + 1) & 0x0F;
|
|
}
|
|
|
|
*nc_off = n;
|
|
|
|
return (0);
|
|
}
|
|
#endif /* MBEDTLS_CIPHER_MODE_CTR */
|
|
|
|
int mbedtls_internal_aes_encrypt(mbedtls_aes_context *ctx,
|
|
const unsigned char input[16],
|
|
unsigned char output[16])
|
|
{
|
|
|
|
if (HAL_CRYP_Encrypt(&ctx->hcryp_aes, (uint32_t *)input, 4, (uint32_t *)output, TIMEOUT_VALUE) != HAL_OK) {
|
|
// error found
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
|
|
int mbedtls_internal_aes_decrypt(mbedtls_aes_context *ctx,
|
|
const unsigned char input[16],
|
|
unsigned char output[16])
|
|
{
|
|
if (HAL_CRYP_Decrypt(&ctx->hcryp_aes, (uint32_t *)input, 4, (uint32_t *)output, TIMEOUT_VALUE) != HAL_OK) {
|
|
// error found
|
|
return ST_ERR_AES_BUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(MBEDTLS_DEPRECATED_REMOVED)
|
|
void mbedtls_aes_encrypt(mbedtls_aes_context *ctx,
|
|
const unsigned char input[16],
|
|
unsigned char output[16])
|
|
{
|
|
mbedtls_internal_aes_encrypt(ctx, input, output);
|
|
}
|
|
|
|
void mbedtls_aes_decrypt(mbedtls_aes_context *ctx,
|
|
const unsigned char input[16],
|
|
unsigned char output[16])
|
|
{
|
|
mbedtls_internal_aes_decrypt(ctx, input, output);
|
|
}
|
|
#endif /* MBEDTLS_DEPRECATED_REMOVED */
|
|
#endif /*MBEDTLS_AES_ALT*/
|
|
#endif /* MBEDTLS_AES_C */
|