mbed-os/features/mbedtls/targets/TARGET_STM/TARGET_STM32F7/aes_alt.c

847 lines
26 KiB
C

/*
* FIPS-197 compliant AES implementation
*
* Copyright (C) 2006-2019, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright (C) 2006-2019 STMicroelectronics, All Rights Reserved
*
* This file implements ST AES HW services based on API from mbed TLS
*
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
*
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
/* Includes ------------------------------------------------------------------*/
#include "mbedtls/aes.h"
#if defined(MBEDTLS_AES_C)
#if defined(MBEDTLS_AES_ALT)
#include "mbedtls/platform_util.h"
#include <string.h>
/* Parameter validation macros based on platform_util.h */
#define AES_VALIDATE_RET( cond ) \
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_AES_BAD_INPUT_DATA )
#define AES_VALIDATE( cond ) \
MBEDTLS_INTERNAL_VALIDATE( cond )
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define TIMEOUT_VALUE 0xFF
/* Private macro -------------------------------------------------------------*/
#define SWAP_B32_TO_B8(b32,b8,i) \
{ \
(b8)[(i) + 3] = (unsigned char) ( ( (b32) ) & 0xFF ); \
(b8)[(i) + 2] = (unsigned char) ( ( (b32) >> 8 ) & 0xFF ); \
(b8)[(i) + 1] = (unsigned char) ( ( (b32) >> 16 ) & 0xFF ); \
(b8)[(i) ] = (unsigned char) ( ( (b32) >> 24 ) & 0xFF ); \
}
#define SWAP_B8_TO_B32(b32,b8,i) \
{ \
(b32) = ( (uint32_t) (b8)[(i) + 3] ) \
| ( (uint32_t) (b8)[(i) + 2] << 8 ) \
| ( (uint32_t) (b8)[(i) + 1] << 16 ) \
| ( (uint32_t) (b8)[(i) ] << 24 ); \
}
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
static int aes_set_key(mbedtls_aes_context *ctx,
const unsigned char *key,
unsigned int keybits)
{
/* Deinitializes the CRYP peripheral */
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) == HAL_ERROR) {
return (HAL_ERROR);
}
switch (keybits) {
case 128:
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_128B;;
SWAP_B8_TO_B32(ctx->aes_key[0], key, 0);
SWAP_B8_TO_B32(ctx->aes_key[1], key, 4);
SWAP_B8_TO_B32(ctx->aes_key[2], key, 8);
SWAP_B8_TO_B32(ctx->aes_key[3], key, 12);
break;
case 192:
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_192B;
SWAP_B8_TO_B32(ctx->aes_key[0], key, 0);
SWAP_B8_TO_B32(ctx->aes_key[1], key, 4);
SWAP_B8_TO_B32(ctx->aes_key[2], key, 8);
SWAP_B8_TO_B32(ctx->aes_key[3], key, 12);
SWAP_B8_TO_B32(ctx->aes_key[4], key, 16);
SWAP_B8_TO_B32(ctx->aes_key[5], key, 20);
break;
case 256:
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_256B;
SWAP_B8_TO_B32(ctx->aes_key[0], key, 0);
SWAP_B8_TO_B32(ctx->aes_key[1], key, 4);
SWAP_B8_TO_B32(ctx->aes_key[2], key, 8);
SWAP_B8_TO_B32(ctx->aes_key[3], key, 12);
SWAP_B8_TO_B32(ctx->aes_key[4], key, 16);
SWAP_B8_TO_B32(ctx->aes_key[5], key, 20);
SWAP_B8_TO_B32(ctx->aes_key[6], key, 24);
SWAP_B8_TO_B32(ctx->aes_key[7], key, 28);
break;
default :
return (MBEDTLS_ERR_AES_INVALID_KEY_LENGTH);
}
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
ctx->hcryp_aes.Instance = CRYP;
ctx->hcryp_aes.Init.pKey = ctx->aes_key;
/* Enable CRYP clock */
__HAL_RCC_CRYP_CLK_ENABLE();
if (HAL_CRYP_Init(&ctx->hcryp_aes) == HAL_ERROR) {
return (HAL_ERROR);
}
/* allow multi-instance of CRYP use: save context for CRYP HW module CR */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
return (0);
}
/* Implementation that should never be optimized out by the compiler */
static void mbedtls_zeroize(void *v, size_t n)
{
volatile unsigned char *p = (unsigned char *)v;
while (n--) {
*p++ = 0;
}
}
void mbedtls_aes_init(mbedtls_aes_context *ctx)
{
AES_VALIDATE(ctx != NULL);
memset(ctx, 0, sizeof(mbedtls_aes_context));
}
void mbedtls_aes_free(mbedtls_aes_context *ctx)
{
if (ctx == NULL) {
return;
}
/* Force the CRYP Periheral Clock Reset */
__HAL_RCC_CRYP_FORCE_RESET();
/* Release the CRYP Periheral Clock Reset */
__HAL_RCC_CRYP_RELEASE_RESET();
mbedtls_zeroize(ctx, sizeof(mbedtls_aes_context));
}
#if defined(MBEDTLS_CIPHER_MODE_XTS)
void mbedtls_aes_xts_init(mbedtls_aes_xts_context *ctx)
{
AES_VALIDATE(ctx != NULL);
mbedtls_aes_init(&ctx->crypt);
mbedtls_aes_init(&ctx->tweak);
}
void mbedtls_aes_xts_free(mbedtls_aes_xts_context *ctx)
{
if (ctx == NULL) {
return;
}
mbedtls_aes_free(&ctx->crypt);
mbedtls_aes_free(&ctx->tweak);
}
#endif /* MBEDTLS_CIPHER_MODE_XTS */
/*
* AES key schedule (encryption)
*/
int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits)
{
int ret_val = 0;
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(key != NULL);
ret_val = aes_set_key(ctx, key, keybits);
return (ret_val);
}
/*
* AES key schedule (decryption)
*/
int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits)
{
int ret_val = 0;
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(key != NULL);
ret_val = aes_set_key(ctx, key, keybits);
return (ret_val);
}
#if defined(MBEDTLS_CIPHER_MODE_XTS)
static int mbedtls_aes_xts_decode_keys(const unsigned char *key,
unsigned int keybits,
const unsigned char **key1,
unsigned int *key1bits,
const unsigned char **key2,
unsigned int *key2bits)
{
const unsigned int half_keybits = keybits / 2;
const unsigned int half_keybytes = half_keybits / 8;
switch (keybits) {
case 256:
break;
case 512:
break;
default :
return (MBEDTLS_ERR_AES_INVALID_KEY_LENGTH);
}
*key1bits = half_keybits;
*key2bits = half_keybits;
*key1 = &key[0];
*key2 = &key[half_keybytes];
return 0;
}
int mbedtls_aes_xts_setkey_enc(mbedtls_aes_xts_context *ctx,
const unsigned char *key,
unsigned int keybits)
{
int ret;
const unsigned char *key1, *key2;
unsigned int key1bits, key2bits;
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(key != NULL);
ret = mbedtls_aes_xts_decode_keys(key, keybits, &key1, &key1bits,
&key2, &key2bits);
if (ret != 0) {
return (ret);
}
/* Set the tweak key. Always set tweak key for the encryption mode. */
ret = mbedtls_aes_setkey_enc(&ctx->tweak, key2, key2bits);
if (ret != 0) {
return (ret);
}
/* Set crypt key for encryption. */
return mbedtls_aes_setkey_enc(&ctx->crypt, key1, key1bits);
}
int mbedtls_aes_xts_setkey_dec(mbedtls_aes_xts_context *ctx,
const unsigned char *key,
unsigned int keybits)
{
int ret;
const unsigned char *key1, *key2;
unsigned int key1bits, key2bits;
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(key != NULL);
ret = mbedtls_aes_xts_decode_keys(key, keybits, &key1, &key1bits,
&key2, &key2bits);
if (ret != 0) {
return (ret);
}
/* Set the tweak key. Always set tweak key for encryption. */
ret = mbedtls_aes_setkey_enc(&ctx->tweak, key2, key2bits);
if (ret != 0) {
return (ret);
}
/* Set crypt key for decryption. */
return mbedtls_aes_setkey_dec(&ctx->crypt, key1, key1bits);
}
#endif /* MBEDTLS_CIPHER_MODE_XTS */
/*
* AES-ECB block encryption/decryption
*/
int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
int ret;
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(input != NULL);
AES_VALIDATE_RET(output != NULL);
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
mode == MBEDTLS_AES_DECRYPT);
/* allow multi-instance of CRYP use: restore context for CRYP hw module */
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
ctx->hcryp_aes.Init.pKey = ctx->aes_key;
/* Set the Algo if not configured till now */
if (CRYP_AES_ECB != ctx->hcryp_aes.Init.Algorithm) {
ctx->hcryp_aes.Init.Algorithm = CRYP_AES_ECB;
/* Configure the CRYP */
HAL_CRYP_SetConfig(&ctx->hcryp_aes, &ctx->hcryp_aes.Init);
}
if (mode == MBEDTLS_AES_DECRYPT) { /* AES decryption */
ret = mbedtls_internal_aes_decrypt(ctx, input, output);
if (ret) {
return ST_ERR_AES_BUSY;
}
} else { /* AES encryption */
ret = mbedtls_internal_aes_encrypt(ctx, input, output);
if (ret) {
return ST_ERR_AES_BUSY;
}
}
/* allow multi-instance of CRYP use: save context for CRYP HW module CR */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
return (0);
}
#if defined(MBEDTLS_CIPHER_MODE_CBC)
/*
* AES-CBC buffer encryption/decryption
*/
static int st_cbc_restore_context(mbedtls_aes_context *ctx)
{
/* allow multi-instance of CRYP use: restore context for CRYP hw module */
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
/* Re-initialize AES processor with proper parameters
and (re-)apply key and IV for multi context usecases */
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
if (HAL_CRYP_Init(&ctx->hcryp_aes) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
return 0;
}
int mbedtls_aes_crypt_cbc(mbedtls_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
uint32_t tickstart;
uint32_t *iv_ptr = (uint32_t *)&iv[0];
ALIGN_32BYTES(static uint32_t iv_32B[4]);
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
mode == MBEDTLS_AES_DECRYPT);
AES_VALIDATE_RET(iv != NULL);
AES_VALIDATE_RET(input != NULL);
AES_VALIDATE_RET(output != NULL);
if (length % 16) {
return (MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH);
}
if (st_cbc_restore_context(ctx) != 0) {
return (ST_ERR_AES_BUSY);
}
/* Set the Algo if not configured till now */
if (CRYP_AES_CBC != ctx->hcryp_aes.Init.Algorithm) {
ctx->hcryp_aes.Init.Algorithm = CRYP_AES_CBC;
}
if (mode == MBEDTLS_AES_DECRYPT) {
ctx->hcryp_aes.Init.pInitVect = (uint32_t *)&iv[0];
/* reconfigure the CRYP */
HAL_CRYP_SetConfig(&ctx->hcryp_aes, &ctx->hcryp_aes.Init);
if (HAL_CRYP_Decrypt(&ctx->hcryp_aes, (uint32_t *)input, length / 4, (uint32_t *)output, TIMEOUT_VALUE) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
/* Save the internal IV vector for multi context purpose */
tickstart = HAL_GetTick();
while ((ctx->hcryp_aes.Instance->SR & (CRYP_SR_IFEM | CRYP_SR_OFNE | CRYP_SR_BUSY)) != CRYP_SR_IFEM) {
if ((HAL_GetTick() - tickstart) > ST_AES_TIMEOUT) {
return ST_ERR_AES_BUSY; // timeout: CRYP processor is busy
}
}
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR; // save here before overwritten
ctx->hcryp_aes.Instance->CR &= ~CRYP_CR_CRYPEN;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV0LR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV0RR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV1LR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV1RR;
} else {
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
ctx->hcryp_aes.Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_BYTE;
SWAP_B8_TO_B32(iv_32B[0], iv, 0);
SWAP_B8_TO_B32(iv_32B[1], iv, 4);
SWAP_B8_TO_B32(iv_32B[2], iv, 8);
SWAP_B8_TO_B32(iv_32B[3], iv, 12);
ctx->hcryp_aes.Init.pInitVect = iv_32B;
/* reconfigure the CRYP */
HAL_CRYP_SetConfig(&ctx->hcryp_aes, &ctx->hcryp_aes.Init);
if (HAL_CRYP_Encrypt(&ctx->hcryp_aes, (uint32_t *)input, length, (uint32_t *)output, TIMEOUT_VALUE) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
memcpy(iv, output, 16); /* current output is the IV vector for the next call */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
}
return 0;
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CIPHER_MODE_XTS)
/* Endianess with 64 bits values */
#ifndef GET_UINT64_LE
#define GET_UINT64_LE(n,b,i) \
{ \
(n) = ( (uint64_t) (b)[(i) + 7] << 56 ) \
| ( (uint64_t) (b)[(i) + 6] << 48 ) \
| ( (uint64_t) (b)[(i) + 5] << 40 ) \
| ( (uint64_t) (b)[(i) + 4] << 32 ) \
| ( (uint64_t) (b)[(i) + 3] << 24 ) \
| ( (uint64_t) (b)[(i) + 2] << 16 ) \
| ( (uint64_t) (b)[(i) + 1] << 8 ) \
| ( (uint64_t) (b)[(i) ] ); \
}
#endif
#ifndef PUT_UINT64_LE
#define PUT_UINT64_LE(n,b,i) \
{ \
(b)[(i) + 7] = (unsigned char) ( (n) >> 56 ); \
(b)[(i) + 6] = (unsigned char) ( (n) >> 48 ); \
(b)[(i) + 5] = (unsigned char) ( (n) >> 40 ); \
(b)[(i) + 4] = (unsigned char) ( (n) >> 32 ); \
(b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) ] = (unsigned char) ( (n) ); \
}
#endif
/*
* GF(2^128) multiplication function
*
* This function multiplies a field element by x in the polynomial field
* representation. It uses 64-bit word operations to gain speed but compensates
* for machine endianess and hence works correctly on both big and little
* endian machines.
*/
static void mbedtls_gf128mul_x_ble(unsigned char r[16],
const unsigned char x[16])
{
uint64_t a, b, ra, rb;
GET_UINT64_LE(a, x, 0);
GET_UINT64_LE(b, x, 8);
ra = (a << 1) ^ 0x0087 >> (8 - ((b >> 63) << 3));
rb = (a >> 63) | (b << 1);
PUT_UINT64_LE(ra, r, 0);
PUT_UINT64_LE(rb, r, 8);
}
/*
* AES-XTS buffer encryption/decryption
*/
int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,
int mode,
size_t length,
const unsigned char data_unit[16],
const unsigned char *input,
unsigned char *output)
{
int ret;
size_t blocks = length / 16;
size_t leftover = length % 16;
unsigned char tweak[16];
unsigned char prev_tweak[16];
unsigned char tmp[16];
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
mode == MBEDTLS_AES_DECRYPT);
AES_VALIDATE_RET(data_unit != NULL);
AES_VALIDATE_RET(input != NULL);
AES_VALIDATE_RET(output != NULL);
/* Data units must be at least 16 bytes long. */
if (length < 16) {
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
}
/* NIST SP 800-38E disallows data units larger than 2**20 blocks. */
if (length > (1 << 20) * 16) {
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
}
/* Compute the tweak. */
ret = mbedtls_aes_crypt_ecb(&ctx->tweak, MBEDTLS_AES_ENCRYPT,
data_unit, tweak);
if (ret != 0) {
return (ret);
}
while (blocks--) {
size_t i;
if (leftover && (mode == MBEDTLS_AES_DECRYPT) && blocks == 0) {
/* We are on the last block in a decrypt operation that has
* leftover bytes, so we need to use the next tweak for this block,
* and this tweak for the lefover bytes. Save the current tweak for
* the leftovers and then update the current tweak for use on this,
* the last full block. */
memcpy(prev_tweak, tweak, sizeof(tweak));
mbedtls_gf128mul_x_ble(tweak, tweak);
}
for (i = 0; i < 16; i++) {
tmp[i] = input[i] ^ tweak[i];
}
ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
if (ret != 0) {
return (ret);
}
for (i = 0; i < 16; i++) {
output[i] = tmp[i] ^ tweak[i];
}
/* Update the tweak for the next block. */
mbedtls_gf128mul_x_ble(tweak, tweak);
output += 16;
input += 16;
}
if (leftover) {
/* If we are on the leftover bytes in a decrypt operation, we need to
* use the previous tweak for these bytes (as saved in prev_tweak). */
unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak;
/* We are now on the final part of the data unit, which doesn't divide
* evenly by 16. It's time for ciphertext stealing. */
size_t i;
unsigned char *prev_output = output - 16;
/* Copy ciphertext bytes from the previous block to our output for each
* byte of cyphertext we won't steal. At the same time, copy the
* remainder of the input for this final round (since the loop bounds
* are the same). */
for (i = 0; i < leftover; i++) {
output[i] = prev_output[i];
tmp[i] = input[i] ^ t[i];
}
/* Copy ciphertext bytes from the previous block for input in this
* round. */
for (; i < 16; i++) {
tmp[i] = prev_output[i] ^ t[i];
}
ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
if (ret != 0) {
return ret;
}
/* Write the result back to the previous block, overriding the previous
* output we copied. */
for (i = 0; i < 16; i++) {
prev_output[i] = tmp[i] ^ t[i];
}
}
return (0);
}
#endif /* MBEDTLS_CIPHER_MODE_XTS */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
/*
* AES-CFB128 buffer encryption/decryption
*/
int mbedtls_aes_crypt_cfb128(mbedtls_aes_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
int c;
size_t n;
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
mode == MBEDTLS_AES_DECRYPT);
AES_VALIDATE_RET(iv_off != NULL);
AES_VALIDATE_RET(iv != NULL);
AES_VALIDATE_RET(input != NULL);
AES_VALIDATE_RET(output != NULL);
n = *iv_off;
if (mode == MBEDTLS_AES_DECRYPT) {
while (length--) {
if (n == 0)
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}
c = *input++;
*output++ = (unsigned char)(c ^ iv[n]);
iv[n] = (unsigned char) c;
n = (n + 1) & 0x0F;
}
} else {
while (length--) {
if (n == 0)
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}
iv[n] = *output++ = (unsigned char)(iv[n] ^ *input++);
n = (n + 1) & 0x0F;
}
}
*iv_off = n;
return (0);
}
/*
* AES-CFB8 buffer encryption/decryption
*/
int mbedtls_aes_crypt_cfb8(mbedtls_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
unsigned char c;
unsigned char ov[17];
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
mode == MBEDTLS_AES_DECRYPT);
AES_VALIDATE_RET(iv != NULL);
AES_VALIDATE_RET(input != NULL);
AES_VALIDATE_RET(output != NULL);
while (length--) {
memcpy(ov, iv, 16);
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}
if (mode == MBEDTLS_AES_DECRYPT) {
ov[16] = *input;
}
c = *output++ = (unsigned char)(iv[0] ^ *input++);
if (mode == MBEDTLS_AES_ENCRYPT) {
ov[16] = c;
}
memcpy(iv, ov + 1, 16);
}
return (0);
}
#endif /*MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_OFB)
/*
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
*/
int mbedtls_aes_crypt_ofb(mbedtls_aes_context *ctx,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
int ret = 0;
size_t n;
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(iv_off != NULL);
AES_VALIDATE_RET(iv != NULL);
AES_VALIDATE_RET(input != NULL);
AES_VALIDATE_RET(output != NULL);
n = *iv_off;
if (n > 15) {
return (MBEDTLS_ERR_AES_BAD_INPUT_DATA);
}
while (length--) {
if (n == 0) {
ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
if (ret != 0) {
goto exit;
}
}
*output++ = *input++ ^ iv[n];
n = (n + 1) & 0x0F;
}
*iv_off = n;
exit:
return (ret);
}
#endif /* MBEDTLS_CIPHER_MODE_OFB */
#if defined(MBEDTLS_CIPHER_MODE_CTR)
/*
* AES-CTR buffer encryption/decryption
*/
int mbedtls_aes_crypt_ctr(mbedtls_aes_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output)
{
int c, i;
size_t n;
AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(nc_off != NULL);
AES_VALIDATE_RET(nonce_counter != NULL);
AES_VALIDATE_RET(stream_block != NULL);
AES_VALIDATE_RET(input != NULL);
AES_VALIDATE_RET(output != NULL);
n = *nc_off;
while (length--) {
if (n == 0) {
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, nonce_counter, stream_block) != 0) {
return ST_ERR_AES_BUSY;
}
for (i = 16; i > 0; i--)
if (++nonce_counter[i - 1] != 0) {
break;
}
}
c = *input++;
*output++ = (unsigned char)(c ^ stream_block[n]);
n = (n + 1) & 0x0F;
}
*nc_off = n;
return (0);
}
#endif /* MBEDTLS_CIPHER_MODE_CTR */
int mbedtls_internal_aes_encrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
if (HAL_CRYP_Encrypt(&ctx->hcryp_aes, (uint32_t *)input, 4, (uint32_t *)output, TIMEOUT_VALUE) != HAL_OK) {
// error found
return ST_ERR_AES_BUSY;
}
return 0;
}
int mbedtls_internal_aes_decrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
if (HAL_CRYP_Decrypt(&ctx->hcryp_aes, (uint32_t *)input, 4, (uint32_t *)output, TIMEOUT_VALUE) != HAL_OK) {
// error found
return ST_ERR_AES_BUSY;
}
return 0;
}
#if !defined(MBEDTLS_DEPRECATED_REMOVED)
void mbedtls_aes_encrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
mbedtls_internal_aes_encrypt(ctx, input, output);
}
void mbedtls_aes_decrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
mbedtls_internal_aes_decrypt(ctx, input, output);
}
#endif /* MBEDTLS_DEPRECATED_REMOVED */
#endif /*MBEDTLS_AES_ALT*/
#endif /* MBEDTLS_AES_C */