mbed-os/source/Core/ns_monitor.c

222 lines
8.8 KiB
C

/*
* Copyright (c) 2019, Arm Limited and affiliates.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* \file ns_monitor.c
* \brief Utility functions for nanostack maintenance
*
* This module tracks stack current heap usage and triggers GC if heap usage is too high.
* GC is triggered by:
* 1. Heap usage is above HEAP_USAGE_HIGH
* 2. Heap usage is above HEAP_USAGE_CRITICAL
* 3. If nsdynmemLIB memory allocation has failed since last check
*/
#include "nsconfig.h"
#include "ns_types.h"
#define HAVE_DEBUG
#include "ns_trace.h"
#include "nsdynmemLIB.h"
#include "ipv6_stack/ipv6_routing_table.h"
#include "NWK_INTERFACE/Include/protocol.h"
#include "6LoWPAN/ws/ws_pae_controller.h"
#include "NWK_INTERFACE/Include/protocol.h"
#define TRACE_GROUP "mntr"
typedef enum {
NS_MONITOR_STATE_HEAP_GC_IDLE = 0,
NS_MONITOR_STATE_HEAP_GC_HIGH,
NS_MONITOR_STATE_GC_CRITICAL
} ns_monitor_state_e;
#define DEFAULT_HEAP_PERCENTAGE_THRESHOLD_HIGH 95
#define DEFAULT_HEAP_PERCENTAGE_THRESHOLD_CRITICAL 99
#define SET_WATERMARK(SECTOR_SIZE, THRESHOLD) (SECTOR_SIZE * THRESHOLD / 100)
#define NS_MAINTENANCE_TIMER_INTERVAL 10 // Maintenance interval
typedef struct ns_monitor__s {
ns_mem_heap_size_t heap_high_watermark;
ns_mem_heap_size_t heap_critical_watermark;
uint32_t prev_heap_alloc_fail_cnt;
ns_monitor_state_e ns_monitor_heap_gc_state;
const mem_stat_t *mem_stats;
uint16_t ns_maintenance_timer;
} ns_monitor_t;
static ns_monitor_t *ns_monitor_ptr = NULL;
static uint8_t ns_dyn_mem_rate_limiting_threshold_percentage = 0; // Percentage of free memory required to allow routing
typedef void (ns_maintenance_gc_cb)(bool full_gc);
/*
* Garbage collection functions.
* Add more GC performing functions to the table
*
*/
static ns_maintenance_gc_cb *ns_maintenance_gc_functions[] = {
ipv6_destination_cache_forced_gc,
ws_pae_controller_forced_gc
};
static void ns_monitor_heap_gc(bool full_gc)
{
(void) full_gc;
for (unsigned int i = 0; i < sizeof(ns_maintenance_gc_functions) / sizeof(ns_maintenance_gc_functions[0]); i++) {
if (ns_maintenance_gc_functions[i]) {
(ns_maintenance_gc_functions[i])(full_gc);
}
}
}
static void ns_monitor_periodic_heap_health_check(void)
{
if (ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes > ns_monitor_ptr->heap_critical_watermark) {
// Heap usage above CRITICAL
if (ns_monitor_ptr->ns_monitor_heap_gc_state != NS_MONITOR_STATE_GC_CRITICAL) {
ns_mem_heap_size_t prev_heap_sector_allocated_bytes = ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes;
tr_debug("heap %lu/%lu", (unsigned long)ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes, (unsigned long)ns_monitor_ptr->mem_stats->heap_sector_size);
ns_monitor_heap_gc(true);
ns_monitor_ptr->ns_monitor_heap_gc_state = NS_MONITOR_STATE_GC_CRITICAL;
tr_info("Stack GC critical: freed %lu bytes", (unsigned long)(prev_heap_sector_allocated_bytes - ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes));
}
} else if (ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes > ns_monitor_ptr->heap_high_watermark) {
// Heap usage above HIGH
if (ns_monitor_ptr->ns_monitor_heap_gc_state == NS_MONITOR_STATE_HEAP_GC_IDLE) {
ns_mem_heap_size_t prev_heap_sector_allocated_bytes = ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes;
tr_debug("heap %lu/%lu", (unsigned long)ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes, (unsigned long)ns_monitor_ptr->mem_stats->heap_sector_size);
ns_monitor_heap_gc(false);
ns_monitor_ptr->ns_monitor_heap_gc_state = NS_MONITOR_STATE_HEAP_GC_HIGH;
tr_info("Stack GC high: freed %lu bytes", (unsigned long)(prev_heap_sector_allocated_bytes - ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes));
}
} else if (ns_monitor_ptr->mem_stats->heap_sector_allocated_bytes <= ns_monitor_ptr->heap_high_watermark) {
// Heap usage in normal range
ns_monitor_ptr->ns_monitor_heap_gc_state = NS_MONITOR_STATE_HEAP_GC_IDLE;
}
}
void ns_monitor_timer(uint16_t seconds)
{
if (ns_monitor_ptr) {
ns_monitor_ptr->ns_maintenance_timer += seconds;
if (ns_monitor_ptr->mem_stats->heap_alloc_fail_cnt > ns_monitor_ptr->prev_heap_alloc_fail_cnt) {
// Heap allocation failure occurred since last check
ns_monitor_ptr->prev_heap_alloc_fail_cnt = ns_monitor_ptr->mem_stats->heap_alloc_fail_cnt;
if (ns_monitor_ptr->ns_monitor_heap_gc_state != NS_MONITOR_STATE_GC_CRITICAL) {
ns_monitor_ptr->ns_monitor_heap_gc_state = NS_MONITOR_STATE_GC_CRITICAL;
ns_monitor_heap_gc(true);
ns_monitor_ptr->ns_maintenance_timer = 0;
}
}
if (ns_monitor_ptr->ns_maintenance_timer >= NS_MAINTENANCE_TIMER_INTERVAL) {
ns_monitor_ptr->ns_maintenance_timer -= NS_MAINTENANCE_TIMER_INTERVAL;
ns_monitor_periodic_heap_health_check();
}
}
}
int ns_monitor_init(void)
{
if (ns_monitor_ptr || !ns_dyn_mem_get_mem_stat()) {
// already initialized or memory statistics not available
return -2;
}
ns_monitor_ptr = ns_dyn_mem_alloc(sizeof(ns_monitor_t));
if (ns_monitor_ptr) {
ns_monitor_ptr->mem_stats = ns_dyn_mem_get_mem_stat();
ns_monitor_ptr->heap_high_watermark = SET_WATERMARK(
ns_monitor_ptr->mem_stats->heap_sector_size,
DEFAULT_HEAP_PERCENTAGE_THRESHOLD_HIGH
);
ns_monitor_ptr->heap_critical_watermark = SET_WATERMARK(
ns_monitor_ptr->mem_stats->heap_sector_size,
DEFAULT_HEAP_PERCENTAGE_THRESHOLD_CRITICAL
);
ns_monitor_ptr->ns_monitor_heap_gc_state = NS_MONITOR_STATE_HEAP_GC_IDLE;
ns_monitor_ptr->ns_maintenance_timer = 0;
ns_monitor_ptr->prev_heap_alloc_fail_cnt = 0;
return 0;
}
return -1;
}
int ns_monitor_clear(void)
{
if (ns_monitor_ptr) {
ns_dyn_mem_free(ns_monitor_ptr);
ns_monitor_ptr = NULL;
return 0;
}
return -1;
}
int ns_monitor_heap_gc_threshold_set(uint8_t percentage_high, uint8_t percentage_critical)
{
if (ns_monitor_ptr && (percentage_critical <= 100) && (percentage_high < percentage_critical)) {
ns_monitor_ptr->heap_high_watermark = SET_WATERMARK(
ns_monitor_ptr->mem_stats->heap_sector_size,
percentage_high
);
ns_monitor_ptr->heap_critical_watermark = SET_WATERMARK(
ns_monitor_ptr->mem_stats->heap_sector_size,
percentage_critical
);
tr_debug("Monitor set high:%lu, critical:%lu total:%lu", (unsigned long)ns_monitor_ptr->heap_high_watermark, (unsigned long)ns_monitor_ptr->heap_critical_watermark, (unsigned long)ns_monitor_ptr->mem_stats->heap_sector_size);
return 0;
}
return -1;
}
int ns_monitor_packet_ingress_rate_limit_by_memory(uint8_t free_heap_percentage)
{
if (free_heap_percentage < 100) {
ns_dyn_mem_rate_limiting_threshold_percentage = free_heap_percentage;
return 0;
}
return -1;
}
bool ns_monitor_packet_allocation_allowed(void)
{
// If there is no packets to forward this should not be blocked.
// There should be cleanup routine enabled that will remove unneeded memory to prevent locks
// this could trigger a function to clean packets from routing and allow newest packets
const mem_stat_t *ns_dyn_mem_stat = ns_dyn_mem_get_mem_stat();
if (ns_dyn_mem_stat && ns_dyn_mem_rate_limiting_threshold_percentage) {
if (ns_dyn_mem_stat->heap_sector_allocated_bytes > ns_dyn_mem_stat->heap_sector_size / 100 * (100 - ns_dyn_mem_rate_limiting_threshold_percentage)) {
// Packet allocation not allowed as memory is running low.
return false;
}
}
return true;
}