mirror of https://github.com/ARMmbed/mbed-os.git
1276 lines
37 KiB
C
1276 lines
37 KiB
C
/* mbed Microcontroller Library
|
|
*******************************************************************************
|
|
* Copyright (c) 2015, STMicroelectronics
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*******************************************************************************
|
|
*/
|
|
|
|
|
|
#include "mbed_assert.h"
|
|
#include "i2c_api.h"
|
|
#include "platform/mbed_wait_api.h"
|
|
|
|
#if DEVICE_I2C
|
|
|
|
#include <string.h>
|
|
#include "cmsis.h"
|
|
#include "pinmap.h"
|
|
#include "PeripheralPins.h"
|
|
#include "i2c_device.h" // family specific defines
|
|
#include "mbed_error.h"
|
|
|
|
#ifndef DEBUG_STDIO
|
|
# define DEBUG_STDIO 0
|
|
#endif
|
|
|
|
#if DEBUG_STDIO
|
|
# include <stdio.h>
|
|
# define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0)
|
|
#else
|
|
# define DEBUG_PRINTF(...) {}
|
|
#endif
|
|
|
|
#if DEVICE_I2C_ASYNCH
|
|
#define I2C_S(obj) (struct i2c_s *) (&((obj)->i2c))
|
|
#else
|
|
#define I2C_S(obj) (struct i2c_s *) (obj)
|
|
#endif
|
|
|
|
/* Family specific description for I2C */
|
|
#define I2C_NUM (5)
|
|
static I2C_HandleTypeDef *i2c_handles[I2C_NUM];
|
|
|
|
/* Timeout values are based on core clock and I2C clock.
|
|
The BYTE_TIMEOUT is computed as twice the number of cycles it would
|
|
take to send 10 bits over I2C. Most Flags should take less than that.
|
|
This is for immediate FLAG or ACK check.
|
|
*/
|
|
#define BYTE_TIMEOUT ((SystemCoreClock / obj_s->hz) * 2 * 10)
|
|
/* Timeout values based on I2C clock.
|
|
The BYTE_TIMEOUT_US is computed as 3x the time in us it would
|
|
take to send 10 bits over I2C. Most Flags should take less than that.
|
|
This is for complete transfers check.
|
|
*/
|
|
#define BYTE_TIMEOUT_US ((SystemCoreClock / obj_s->hz) * 3 * 10)
|
|
/* Timeout values for flags and events waiting loops. These timeouts are
|
|
not based on accurate values, they just guarantee that the application will
|
|
not remain stuck if the I2C communication is corrupted.
|
|
*/
|
|
#define FLAG_TIMEOUT ((int)0x1000)
|
|
|
|
/* Declare i2c_init_internal to be used in this file */
|
|
void i2c_init_internal(i2c_t *obj, PinName sda, PinName scl);
|
|
|
|
/* GENERIC INIT and HELPERS FUNCTIONS */
|
|
|
|
#if defined(I2C1_BASE)
|
|
static void i2c1_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[0];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(I2C2_BASE)
|
|
static void i2c2_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[1];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(I2C3_BASE)
|
|
static void i2c3_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[2];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(I2C4_BASE)
|
|
static void i2c4_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[3];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(FMPI2C1_BASE)
|
|
static void i2c5_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[4];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
|
|
void i2c_ev_err_enable(i2c_t *obj, uint32_t handler)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
IRQn_Type irq_event_n = obj_s->event_i2cIRQ;
|
|
IRQn_Type irq_error_n = obj_s->error_i2cIRQ;
|
|
/* default prio in master case is set to 2 */
|
|
uint32_t prio = 2;
|
|
|
|
/* Set up ITs using IRQ and handler tables */
|
|
NVIC_SetVector(irq_event_n, handler);
|
|
NVIC_SetVector(irq_error_n, handler);
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
/* Set higher priority to slave device than master.
|
|
* In case a device makes use of both master and slave, the
|
|
* slave needs higher responsiveness.
|
|
*/
|
|
if (obj_s->slave) {
|
|
prio = 1;
|
|
}
|
|
#endif
|
|
|
|
NVIC_SetPriority(irq_event_n, prio);
|
|
NVIC_SetPriority(irq_error_n, prio);
|
|
NVIC_EnableIRQ(irq_event_n);
|
|
NVIC_EnableIRQ(irq_error_n);
|
|
}
|
|
|
|
void i2c_ev_err_disable(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
IRQn_Type irq_event_n = obj_s->event_i2cIRQ;
|
|
IRQn_Type irq_error_n = obj_s->error_i2cIRQ;
|
|
|
|
HAL_NVIC_DisableIRQ(irq_event_n);
|
|
HAL_NVIC_DisableIRQ(irq_error_n);
|
|
}
|
|
|
|
uint32_t i2c_get_irq_handler(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
uint32_t handler = 0;
|
|
|
|
switch (obj_s->index) {
|
|
#if defined(I2C1_BASE)
|
|
case 0:
|
|
handler = (uint32_t)&i2c1_irq;
|
|
break;
|
|
#endif
|
|
#if defined(I2C2_BASE)
|
|
case 1:
|
|
handler = (uint32_t)&i2c2_irq;
|
|
break;
|
|
#endif
|
|
#if defined(I2C3_BASE)
|
|
case 2:
|
|
handler = (uint32_t)&i2c3_irq;
|
|
break;
|
|
#endif
|
|
#if defined(I2C4_BASE)
|
|
case 3:
|
|
handler = (uint32_t)&i2c4_irq;
|
|
break;
|
|
#endif
|
|
#if defined(FMPI2C1_BASE)
|
|
case 4:
|
|
handler = (uint32_t)&i2c5_irq;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
i2c_handles[obj_s->index] = handle;
|
|
return handler;
|
|
}
|
|
|
|
void i2c_hw_reset(i2c_t *obj)
|
|
{
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
handle->Instance = (I2C_TypeDef *)(obj_s->i2c);
|
|
|
|
// wait before reset
|
|
timeout = BYTE_TIMEOUT;
|
|
while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BUSY)) && (--timeout != 0));
|
|
#if defined I2C1_BASE
|
|
if (obj_s->i2c == I2C_1) {
|
|
__HAL_RCC_I2C1_FORCE_RESET();
|
|
__HAL_RCC_I2C1_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined I2C2_BASE
|
|
if (obj_s->i2c == I2C_2) {
|
|
__HAL_RCC_I2C2_FORCE_RESET();
|
|
__HAL_RCC_I2C2_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined I2C3_BASE
|
|
if (obj_s->i2c == I2C_3) {
|
|
__HAL_RCC_I2C3_FORCE_RESET();
|
|
__HAL_RCC_I2C3_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined I2C4_BASE
|
|
if (obj_s->i2c == I2C_4) {
|
|
__HAL_RCC_I2C4_FORCE_RESET();
|
|
__HAL_RCC_I2C4_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined FMPI2C1_BASE
|
|
if (obj_s->i2c == FMPI2C_1) {
|
|
__HAL_RCC_FMPI2C1_FORCE_RESET();
|
|
__HAL_RCC_FMPI2C1_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void i2c_sw_reset(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
/* SW reset procedure:
|
|
* PE must be kept low during at least 3 APB clock cycles
|
|
* in order to perform the software reset.
|
|
* This is ensured by writing the following software sequence:
|
|
* - Write PE=0
|
|
* - Check PE=0
|
|
* - Write PE=1.
|
|
*/
|
|
handle->Instance->CR1 &= ~I2C_CR1_PE;
|
|
while (handle->Instance->CR1 & I2C_CR1_PE);
|
|
handle->Instance->CR1 |= I2C_CR1_PE;
|
|
}
|
|
|
|
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
|
|
{
|
|
memset(obj, 0, sizeof(*obj));
|
|
i2c_init_internal(obj, sda, scl);
|
|
}
|
|
|
|
void i2c_init_internal(i2c_t *obj, PinName sda, PinName scl)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
// Determine the I2C to use
|
|
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
|
|
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
|
|
obj_s->sda = sda;
|
|
obj_s->scl = scl;
|
|
|
|
obj_s->i2c = (I2CName)pinmap_merge(i2c_sda, i2c_scl);
|
|
MBED_ASSERT(obj_s->i2c != (I2CName)NC);
|
|
|
|
#if defined I2C1_BASE
|
|
// Enable I2C1 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_1) {
|
|
obj_s->index = 0;
|
|
__HAL_RCC_I2C1_CLK_ENABLE();
|
|
// Configure I2C pins
|
|
obj_s->event_i2cIRQ = I2C1_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C1_ER_IRQn;
|
|
}
|
|
#endif
|
|
#if defined I2C2_BASE
|
|
// Enable I2C2 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_2) {
|
|
obj_s->index = 1;
|
|
__HAL_RCC_I2C2_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = I2C2_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C2_ER_IRQn;
|
|
}
|
|
#endif
|
|
#if defined I2C3_BASE
|
|
// Enable I2C3 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_3) {
|
|
obj_s->index = 2;
|
|
__HAL_RCC_I2C3_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = I2C3_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C3_ER_IRQn;
|
|
}
|
|
#endif
|
|
#if defined I2C4_BASE
|
|
// Enable I2C3 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_4) {
|
|
obj_s->index = 3;
|
|
__HAL_RCC_I2C4_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = I2C4_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C4_ER_IRQn;
|
|
}
|
|
#endif
|
|
#if defined FMPI2C1_BASE
|
|
// Enable I2C3 clock and pinout if not done
|
|
if (obj_s->i2c == FMPI2C_1) {
|
|
obj_s->index = 4;
|
|
__HAL_RCC_FMPI2C1_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = FMPI2C1_EV_IRQn;
|
|
obj_s->error_i2cIRQ = FMPI2C1_ER_IRQn;
|
|
}
|
|
#endif
|
|
|
|
// Configure I2C pins
|
|
pinmap_pinout(sda, PinMap_I2C_SDA);
|
|
pinmap_pinout(scl, PinMap_I2C_SCL);
|
|
pin_mode(sda, OpenDrainNoPull);
|
|
pin_mode(scl, OpenDrainNoPull);
|
|
|
|
// I2C configuration
|
|
// Default hz value used for timeout computation
|
|
if (!obj_s->hz) {
|
|
obj_s->hz = 100000; // 100 kHz per default
|
|
}
|
|
|
|
// Reset to clear pending flags if any
|
|
i2c_hw_reset(obj);
|
|
i2c_frequency(obj, obj_s->hz);
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
// I2C master by default
|
|
obj_s->slave = 0;
|
|
obj_s->pending_slave_tx_master_rx = 0;
|
|
obj_s->pending_slave_rx_maxter_tx = 0;
|
|
#endif
|
|
|
|
// I2C Xfer operation init
|
|
obj_s->event = 0;
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
#ifdef I2C_IP_VERSION_V2
|
|
obj_s->pending_start = 0;
|
|
#endif
|
|
}
|
|
|
|
void i2c_frequency(i2c_t *obj, int hz)
|
|
{
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
// wait before init
|
|
timeout = BYTE_TIMEOUT;
|
|
while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BUSY)) && (--timeout != 0));
|
|
|
|
#ifdef I2C_IP_VERSION_V1
|
|
handle->Init.ClockSpeed = hz;
|
|
handle->Init.DutyCycle = I2C_DUTYCYCLE_2;
|
|
#endif
|
|
#ifdef I2C_IP_VERSION_V2
|
|
/* Only predefined timing for below frequencies are supported */
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || (hz == 1000000));
|
|
handle->Init.Timing = get_i2c_timing(hz);
|
|
|
|
// Enable the Fast Mode Plus capability
|
|
if (hz == 1000000) {
|
|
#if defined(I2C1_BASE) && defined(__HAL_SYSCFG_FASTMODEPLUS_ENABLE) && defined (I2C_FASTMODEPLUS_I2C1)
|
|
if (obj_s->i2c == I2C_1) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C1);
|
|
}
|
|
#endif
|
|
#if defined(I2C2_BASE) && defined(__HAL_SYSCFG_FASTMODEPLUS_ENABLE) && defined (I2C_FASTMODEPLUS_I2C2)
|
|
if (obj_s->i2c == I2C_2) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C2);
|
|
}
|
|
#endif
|
|
#if defined(I2C3_BASE) && defined(__HAL_SYSCFG_FASTMODEPLUS_ENABLE) && defined (I2C_FASTMODEPLUS_I2C3)
|
|
if (obj_s->i2c == I2C_3) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C3);
|
|
}
|
|
#endif
|
|
#if defined(I2C4_BASE) && defined(__HAL_SYSCFG_FASTMODEPLUS_ENABLE) && defined (I2C_FASTMODEPLUS_I2C4)
|
|
if (obj_s->i2c == I2C_4) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C4);
|
|
}
|
|
#endif
|
|
}
|
|
#endif //I2C_IP_VERSION_V2
|
|
|
|
/*##-1- Configure the I2C clock source. The clock is derived from the SYSCLK #*/
|
|
#if defined(I2C1_BASE) && defined (__HAL_RCC_I2C1_CONFIG)
|
|
if (obj_s->i2c == I2C_1) {
|
|
__HAL_RCC_I2C1_CONFIG(I2CAPI_I2C1_CLKSRC);
|
|
}
|
|
#endif
|
|
#if defined(I2C2_BASE) && defined(__HAL_RCC_I2C2_CONFIG)
|
|
if (obj_s->i2c == I2C_2) {
|
|
__HAL_RCC_I2C2_CONFIG(I2CAPI_I2C2_CLKSRC);
|
|
}
|
|
#endif
|
|
#if defined(I2C3_BASE) && defined(__HAL_RCC_I2C3_CONFIG)
|
|
if (obj_s->i2c == I2C_3) {
|
|
__HAL_RCC_I2C3_CONFIG(I2CAPI_I2C3_CLKSRC);
|
|
}
|
|
#endif
|
|
#if defined(I2C4_BASE) && defined(__HAL_RCC_I2C4_CONFIG)
|
|
if (obj_s->i2c == I2C_4) {
|
|
__HAL_RCC_I2C4_CONFIG(I2CAPI_I2C4_CLKSRC);
|
|
}
|
|
#endif
|
|
|
|
#ifdef I2C_ANALOGFILTER_ENABLE
|
|
/* Enable the Analog I2C Filter */
|
|
HAL_I2CEx_ConfigAnalogFilter(handle, I2C_ANALOGFILTER_ENABLE);
|
|
#endif
|
|
|
|
// I2C configuration
|
|
handle->Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
|
handle->Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
|
|
handle->Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
|
|
handle->Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
|
|
handle->Init.OwnAddress1 = 0;
|
|
handle->Init.OwnAddress2 = 0;
|
|
HAL_I2C_Init(handle);
|
|
|
|
/* store frequency for timeout computation */
|
|
obj_s->hz = hz;
|
|
}
|
|
|
|
i2c_t *get_i2c_obj(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Aim of the function is to get i2c_s pointer using hi2c pointer */
|
|
/* Highly inspired from magical linux kernel's "container_of" */
|
|
/* (which was not directly used since not compatible with IAR toolchain) */
|
|
struct i2c_s *obj_s;
|
|
i2c_t *obj;
|
|
|
|
obj_s = (struct i2c_s *)((char *)hi2c - offsetof(struct i2c_s, handle));
|
|
obj = (i2c_t *)((char *)obj_s - offsetof(i2c_t, i2c));
|
|
|
|
return (obj);
|
|
}
|
|
|
|
void i2c_reset(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
/* As recommended in i2c_api.h, mainly send stop */
|
|
i2c_stop(obj);
|
|
/* then re-init */
|
|
i2c_init_internal(obj, obj_s->sda, obj_s->scl);
|
|
}
|
|
|
|
/*
|
|
* UNITARY APIS.
|
|
* For very basic operations, direct registers access is needed
|
|
* There are 2 different IPs version that need to be supported
|
|
*/
|
|
#ifdef I2C_IP_VERSION_V1
|
|
int i2c_start(i2c_t *obj)
|
|
{
|
|
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
// Clear Acknowledge failure flag
|
|
__HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_AF);
|
|
|
|
// Wait the STOP condition has been previously correctly sent
|
|
// This timeout can be avoid in some specific cases by simply clearing the STOP bit
|
|
timeout = FLAG_TIMEOUT;
|
|
while ((handle->Instance->CR1 & I2C_CR1_STOP) == I2C_CR1_STOP) {
|
|
if ((timeout--) == 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Generate the START condition
|
|
handle->Instance->CR1 |= I2C_CR1_START;
|
|
|
|
// Wait the START condition has been correctly sent
|
|
timeout = FLAG_TIMEOUT;
|
|
while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_SB) == RESET) {
|
|
if ((timeout--) == 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i2c_stop(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_TypeDef *i2c = (I2C_TypeDef *)obj_s->i2c;
|
|
|
|
// Generate the STOP condition
|
|
i2c->CR1 |= I2C_CR1_STOP;
|
|
|
|
/* In case of mixed usage of the APIs (unitary + SYNC)
|
|
* re-init HAL state
|
|
*/
|
|
if (obj_s->XferOperation != I2C_FIRST_AND_LAST_FRAME) {
|
|
i2c_init_internal(obj, obj_s->sda, obj_s->scl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i2c_byte_read(i2c_t *obj, int last)
|
|
{
|
|
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
if (last) {
|
|
// Don't acknowledge the last byte
|
|
handle->Instance->CR1 &= ~I2C_CR1_ACK;
|
|
} else {
|
|
// Acknowledge the byte
|
|
handle->Instance->CR1 |= I2C_CR1_ACK;
|
|
}
|
|
|
|
// Wait until the byte is received
|
|
timeout = FLAG_TIMEOUT;
|
|
while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_RXNE) == RESET) {
|
|
if ((timeout--) == 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return (int)handle->Instance->DR;
|
|
}
|
|
|
|
int i2c_byte_write(i2c_t *obj, int data)
|
|
{
|
|
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
handle->Instance->DR = (uint8_t)data;
|
|
|
|
// Wait until the byte (might be the address) is transmitted
|
|
timeout = FLAG_TIMEOUT;
|
|
while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXE) == RESET) &&
|
|
(__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BTF) == RESET) &&
|
|
(__HAL_I2C_GET_FLAG(handle, I2C_FLAG_ADDR) == RESET)) {
|
|
if ((timeout--) == 0) {
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
if (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_ADDR) != RESET) {
|
|
__HAL_I2C_CLEAR_ADDRFLAG(handle);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif //I2C_IP_VERSION_V1
|
|
#ifdef I2C_IP_VERSION_V2
|
|
|
|
int i2c_start(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
/* This I2C IP doesn't */
|
|
obj_s->pending_start = 1;
|
|
return 0;
|
|
}
|
|
|
|
int i2c_stop(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int timeout = FLAG_TIMEOUT;
|
|
#if DEVICE_I2CSLAVE
|
|
if (obj_s->slave) {
|
|
/* re-init slave when stop is requested */
|
|
i2c_init_internal(obj, obj_s->sda, obj_s->scl);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// Ensure the transmission is started before sending a stop
|
|
if ((handle->Instance->CR2 & (uint32_t)I2C_CR2_RD_WRN) == 0) {
|
|
timeout = FLAG_TIMEOUT;
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXIS)) {
|
|
if ((timeout--) == 0) {
|
|
return I2C_ERROR_BUS_BUSY;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Generate the STOP condition
|
|
handle->Instance->CR2 = I2C_CR2_STOP;
|
|
|
|
timeout = FLAG_TIMEOUT;
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_STOPF)) {
|
|
if ((timeout--) == 0) {
|
|
return I2C_ERROR_BUS_BUSY;
|
|
}
|
|
}
|
|
|
|
/* Clear STOP Flag */
|
|
__HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_STOPF);
|
|
|
|
/* Erase slave address, this wiil be used as a marker
|
|
* to know when we need to prepare next start */
|
|
handle->Instance->CR2 &= ~I2C_CR2_SADD;
|
|
|
|
/*
|
|
* V2 IP is meant for automatic STOP, not user STOP
|
|
* SW reset the IP state machine before next transaction
|
|
*/
|
|
i2c_sw_reset(obj);
|
|
|
|
/* In case of mixed usage of the APIs (unitary + SYNC)
|
|
* re-init HAL state */
|
|
if (obj_s->XferOperation != I2C_FIRST_AND_LAST_FRAME) {
|
|
i2c_init_internal(obj, obj_s->sda, obj_s->scl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i2c_byte_read(i2c_t *obj, int last)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int timeout = FLAG_TIMEOUT;
|
|
uint32_t tmpreg = handle->Instance->CR2;
|
|
char data;
|
|
#if DEVICE_I2CSLAVE
|
|
if (obj_s->slave) {
|
|
return i2c_slave_read(obj, &data, 1);
|
|
}
|
|
#endif
|
|
/* Then send data when there's room in the TX fifo */
|
|
if ((tmpreg & I2C_CR2_RELOAD) != 0) {
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TCR)) {
|
|
if ((timeout--) == 0) {
|
|
DEBUG_PRINTF("timeout in byte_read\r\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (last) {
|
|
/* Disable Address Acknowledge */
|
|
tmpreg = tmpreg & (~I2C_CR2_RELOAD);
|
|
tmpreg |= I2C_CR2_NACK | (I2C_CR2_NBYTES & (1 << 16));
|
|
} else {
|
|
/* Enable reload mode as we don't know how many bytes will be sent */
|
|
/* and set transfer size to 1 */
|
|
tmpreg |= I2C_CR2_RELOAD | (I2C_CR2_NBYTES & (1 << 16));
|
|
}
|
|
|
|
/* Set the prepared configuration */
|
|
handle->Instance->CR2 = tmpreg;
|
|
|
|
timeout = FLAG_TIMEOUT;
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_RXNE)) {
|
|
if ((timeout--) == 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Then Get Byte */
|
|
data = handle->Instance->RXDR;
|
|
|
|
return data;
|
|
}
|
|
|
|
int i2c_byte_write(i2c_t *obj, int data)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int timeout = FLAG_TIMEOUT;
|
|
uint32_t tmpreg = handle->Instance->CR2;
|
|
#if DEVICE_I2CSLAVE
|
|
if (obj_s->slave) {
|
|
return i2c_slave_write(obj, (char *) &data, 1);
|
|
}
|
|
#endif
|
|
if (obj_s->pending_start) {
|
|
obj_s->pending_start = 0;
|
|
//* First byte after the start is the address */
|
|
tmpreg |= (uint32_t)((uint32_t)data & I2C_CR2_SADD);
|
|
if (data & 0x01) {
|
|
tmpreg |= I2C_CR2_START | I2C_CR2_RD_WRN;
|
|
} else {
|
|
tmpreg |= I2C_CR2_START;
|
|
tmpreg &= ~I2C_CR2_RD_WRN;
|
|
}
|
|
/* Disable reload first to use it later */
|
|
tmpreg &= ~I2C_CR2_RELOAD;
|
|
/* Disable Autoend */
|
|
tmpreg &= ~I2C_CR2_AUTOEND;
|
|
/* Do not set any transfer size for now */
|
|
tmpreg |= (I2C_CR2_NBYTES & (1 << 16));
|
|
/* Set the prepared configuration */
|
|
handle->Instance->CR2 = tmpreg;
|
|
} else {
|
|
/* Set the prepared configuration */
|
|
tmpreg = handle->Instance->CR2;
|
|
|
|
/* Then send data when there's room in the TX fifo */
|
|
if ((tmpreg & I2C_CR2_RELOAD) != 0) {
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TCR)) {
|
|
if ((timeout--) == 0) {
|
|
DEBUG_PRINTF("timeout in byte_write\r\n");
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
/* Enable reload mode as we don't know how many bytes will eb sent */
|
|
tmpreg |= I2C_CR2_RELOAD;
|
|
/* Set transfer size to 1 */
|
|
tmpreg |= (I2C_CR2_NBYTES & (1 << 16));
|
|
/* Set the prepared configuration */
|
|
handle->Instance->CR2 = tmpreg;
|
|
/* Prepare next write */
|
|
timeout = FLAG_TIMEOUT;
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXE)) {
|
|
if ((timeout--) == 0) {
|
|
return 2;
|
|
}
|
|
}
|
|
/* Write byte */
|
|
handle->Instance->TXDR = data;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif //I2C_IP_VERSION_V2
|
|
|
|
/*
|
|
* SYNC APIS
|
|
*/
|
|
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int count = I2C_ERROR_BUS_BUSY, ret = 0;
|
|
uint32_t timeout = 0;
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
// Trick to remove compiler warning "left and right operands are identical" in some cases
|
|
uint32_t op1 = I2C_FIRST_AND_LAST_FRAME;
|
|
uint32_t op2 = I2C_LAST_FRAME;
|
|
if ((obj_s->XferOperation == op1) || (obj_s->XferOperation == op2)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else if ((obj_s->XferOperation == I2C_FIRST_FRAME) ||
|
|
(obj_s->XferOperation == I2C_NEXT_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_NEXT_FRAME;
|
|
}
|
|
}
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
if ((obj_s->XferOperation == I2C_FIRST_FRAME) || (obj_s->XferOperation == I2C_FIRST_AND_LAST_FRAME) || (obj_s->XferOperation == I2C_LAST_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else {
|
|
// should not happend
|
|
error("I2C: abnormal case should not happend");
|
|
}
|
|
#endif
|
|
|
|
obj_s->event = 0;
|
|
|
|
/* Activate default IRQ handlers for sync mode
|
|
* which would be overwritten in async mode
|
|
*/
|
|
i2c_ev_err_enable(obj, i2c_get_irq_handler(obj));
|
|
|
|
ret = HAL_I2C_Master_Sequential_Receive_IT(handle, address, (uint8_t *) data, length, obj_s->XferOperation);
|
|
|
|
if (ret == HAL_OK) {
|
|
timeout = BYTE_TIMEOUT_US * (length + 1);
|
|
/* transfer started : wait completion or timeout */
|
|
while (!(obj_s->event & I2C_EVENT_ALL) && (--timeout != 0)) {
|
|
wait_us(1);
|
|
}
|
|
|
|
i2c_ev_err_disable(obj);
|
|
|
|
if ((timeout == 0) || (obj_s->event != I2C_EVENT_TRANSFER_COMPLETE)) {
|
|
DEBUG_PRINTF(" TIMEOUT or error in i2c_read\r\n");
|
|
/* re-init IP to try and get back in a working state */
|
|
i2c_init_internal(obj, obj_s->sda, obj_s->scl);
|
|
} else {
|
|
count = length;
|
|
}
|
|
} else {
|
|
DEBUG_PRINTF("ERROR in i2c_read:%d\r\n", ret);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int count = I2C_ERROR_BUS_BUSY, ret = 0;
|
|
uint32_t timeout = 0;
|
|
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
// Trick to remove compiler warning "left and right operands are identical" in some cases
|
|
uint32_t op1 = I2C_FIRST_AND_LAST_FRAME;
|
|
uint32_t op2 = I2C_LAST_FRAME;
|
|
if ((obj_s->XferOperation == op1) || (obj_s->XferOperation == op2)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else if ((obj_s->XferOperation == I2C_FIRST_FRAME) ||
|
|
(obj_s->XferOperation == I2C_NEXT_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_NEXT_FRAME;
|
|
}
|
|
}
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
if ((obj_s->XferOperation == I2C_FIRST_FRAME) || (obj_s->XferOperation == I2C_FIRST_AND_LAST_FRAME) || (obj_s->XferOperation == I2C_LAST_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else {
|
|
// should not happend
|
|
error("I2C: abnormal case should not happend");
|
|
}
|
|
#endif
|
|
|
|
obj_s->event = 0;
|
|
|
|
i2c_ev_err_enable(obj, i2c_get_irq_handler(obj));
|
|
|
|
ret = HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t *) data, length, obj_s->XferOperation);
|
|
|
|
if (ret == HAL_OK) {
|
|
timeout = BYTE_TIMEOUT_US * (length + 1);
|
|
/* transfer started : wait completion or timeout */
|
|
while (!(obj_s->event & I2C_EVENT_ALL) && (--timeout != 0)) {
|
|
wait_us(1);
|
|
}
|
|
|
|
i2c_ev_err_disable(obj);
|
|
|
|
if ((timeout == 0) || (obj_s->event != I2C_EVENT_TRANSFER_COMPLETE)) {
|
|
DEBUG_PRINTF(" TIMEOUT or error in i2c_write\r\n");
|
|
/* re-init IP to try and get back in a working state */
|
|
i2c_init_internal(obj, obj_s->sda, obj_s->scl);
|
|
} else {
|
|
count = length;
|
|
}
|
|
} else {
|
|
DEBUG_PRINTF("ERROR in i2c_read\r\n");
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
#if DEVICE_I2C_ASYNCH
|
|
/* Handle potential Tx/Rx use case */
|
|
if ((obj->tx_buff.length) && (obj->rx_buff.length)) {
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
if (obj_s->stop) {
|
|
obj_s->XferOperation = I2C_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_NEXT_FRAME;
|
|
}
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
if (obj_s->stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
#endif
|
|
|
|
HAL_I2C_Master_Sequential_Receive_IT(hi2c, obj_s->address, (uint8_t *)obj->rx_buff.buffer, obj->rx_buff.length, obj_s->XferOperation);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Set event flag */
|
|
obj_s->event = I2C_EVENT_TRANSFER_COMPLETE;
|
|
}
|
|
}
|
|
|
|
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
/* Set event flag */
|
|
obj_s->event = I2C_EVENT_TRANSFER_COMPLETE;
|
|
}
|
|
|
|
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
#if DEVICE_I2CSLAVE
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
uint32_t address = 0;
|
|
/* Store address to handle it after reset */
|
|
if (obj_s->slave) {
|
|
address = handle->Init.OwnAddress1;
|
|
}
|
|
#endif
|
|
|
|
DEBUG_PRINTF("HAL_I2C_ErrorCallback:%d, index=%d\r\n", (int) hi2c->ErrorCode, obj_s->index);
|
|
|
|
/* re-init IP to try and get back in a working state */
|
|
i2c_init_internal(obj, obj_s->sda, obj_s->scl);
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
/* restore slave address */
|
|
if (address != 0) {
|
|
obj_s->slave = 1;
|
|
i2c_slave_address(obj, 0, address, 0);
|
|
}
|
|
#endif
|
|
|
|
/* Keep Set event flag */
|
|
obj_s->event = I2C_EVENT_ERROR;
|
|
}
|
|
|
|
const PinMap *i2c_master_sda_pinmap()
|
|
{
|
|
return PinMap_I2C_SDA;
|
|
}
|
|
|
|
const PinMap *i2c_master_scl_pinmap()
|
|
{
|
|
return PinMap_I2C_SCL;
|
|
}
|
|
|
|
const PinMap *i2c_slave_sda_pinmap()
|
|
{
|
|
return PinMap_I2C_SDA;
|
|
}
|
|
|
|
const PinMap *i2c_slave_scl_pinmap()
|
|
{
|
|
return PinMap_I2C_SCL;
|
|
}
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
/* SLAVE API FUNCTIONS */
|
|
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
// I2C configuration
|
|
handle->Init.OwnAddress1 = address;
|
|
HAL_I2C_Init(handle);
|
|
|
|
i2c_ev_err_enable(obj, i2c_get_irq_handler(obj));
|
|
|
|
HAL_I2C_EnableListen_IT(handle);
|
|
}
|
|
|
|
void i2c_slave_mode(i2c_t *obj, int enable_slave)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
if (enable_slave) {
|
|
obj_s->slave = 1;
|
|
HAL_I2C_EnableListen_IT(handle);
|
|
} else {
|
|
obj_s->slave = 0;
|
|
HAL_I2C_DisableListen_IT(handle);
|
|
}
|
|
}
|
|
|
|
// See I2CSlave.h
|
|
#define NoData 0 // the slave has not been addressed
|
|
#define ReadAddressed 1 // the master has requested a read from this slave (slave = transmitter)
|
|
#define WriteGeneral 2 // the master is writing to all slave
|
|
#define WriteAddressed 3 // the master is writing to this slave (slave = receiver)
|
|
|
|
|
|
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
/* Transfer direction in HAL is from Master point of view */
|
|
if (TransferDirection == I2C_DIRECTION_RECEIVE) {
|
|
obj_s->pending_slave_tx_master_rx = 1;
|
|
}
|
|
|
|
if (TransferDirection == I2C_DIRECTION_TRANSMIT) {
|
|
obj_s->pending_slave_rx_maxter_tx = 1;
|
|
}
|
|
}
|
|
|
|
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(I2cHandle);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
obj_s->pending_slave_tx_master_rx = 0;
|
|
}
|
|
|
|
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(I2cHandle);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
obj_s->pending_slave_rx_maxter_tx = 0;
|
|
}
|
|
|
|
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* restart listening for master requests */
|
|
HAL_I2C_EnableListen_IT(hi2c);
|
|
}
|
|
|
|
int i2c_slave_receive(i2c_t *obj)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
int retValue = NoData;
|
|
|
|
if (obj_s->pending_slave_rx_maxter_tx) {
|
|
retValue = WriteAddressed;
|
|
}
|
|
|
|
if (obj_s->pending_slave_tx_master_rx) {
|
|
retValue = ReadAddressed;
|
|
}
|
|
|
|
return (retValue);
|
|
}
|
|
|
|
int i2c_slave_read(i2c_t *obj, char *data, int length)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int count = 0;
|
|
int ret = 0;
|
|
uint32_t timeout = 0;
|
|
|
|
/* Always use I2C_NEXT_FRAME as slave will just adapt to master requests */
|
|
ret = HAL_I2C_Slave_Sequential_Receive_IT(handle, (uint8_t *) data, length, I2C_NEXT_FRAME);
|
|
|
|
if (ret == HAL_OK) {
|
|
timeout = BYTE_TIMEOUT_US * (length + 1);
|
|
while (obj_s->pending_slave_rx_maxter_tx && (--timeout != 0)) {
|
|
wait_us(1);
|
|
}
|
|
|
|
if (timeout != 0) {
|
|
count = length;
|
|
} else {
|
|
DEBUG_PRINTF("TIMEOUT or error in i2c_slave_read\r\n");
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
int i2c_slave_write(i2c_t *obj, const char *data, int length)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int count = 0;
|
|
int ret = 0;
|
|
uint32_t timeout = 0;
|
|
|
|
/* Always use I2C_NEXT_FRAME as slave will just adapt to master requests */
|
|
ret = HAL_I2C_Slave_Sequential_Transmit_IT(handle, (uint8_t *) data, length, I2C_NEXT_FRAME);
|
|
|
|
if (ret == HAL_OK) {
|
|
timeout = BYTE_TIMEOUT_US * (length + 1);
|
|
while (obj_s->pending_slave_tx_master_rx && (--timeout != 0)) {
|
|
wait_us(1);
|
|
}
|
|
|
|
if (timeout != 0) {
|
|
count = length;
|
|
} else {
|
|
DEBUG_PRINTF("TIMEOUT or error in i2c_slave_write\r\n");
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
#endif // DEVICE_I2CSLAVE
|
|
|
|
#if DEVICE_I2C_ASYNCH
|
|
/* ASYNCH MASTER API FUNCTIONS */
|
|
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
/* Disable IT. Not always done before calling macro */
|
|
__HAL_I2C_DISABLE_IT(handle, I2C_IT_ALL);
|
|
i2c_ev_err_disable(obj);
|
|
|
|
/* Set event flag */
|
|
obj_s->event = I2C_EVENT_ERROR;
|
|
}
|
|
|
|
void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint)
|
|
{
|
|
|
|
// TODO: DMA usage is currently ignored by this way
|
|
(void) hint;
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
/* Update object */
|
|
obj->tx_buff.buffer = (void *)tx;
|
|
obj->tx_buff.length = tx_length;
|
|
obj->tx_buff.pos = 0;
|
|
obj->tx_buff.width = 8;
|
|
|
|
obj->rx_buff.buffer = (void *)rx;
|
|
obj->rx_buff.length = rx_length;
|
|
obj->rx_buff.pos = SIZE_MAX;
|
|
obj->rx_buff.width = 8;
|
|
|
|
obj_s->available_events = event;
|
|
obj_s->event = 0;
|
|
obj_s->address = address;
|
|
obj_s->stop = stop;
|
|
|
|
i2c_ev_err_enable(obj, handler);
|
|
|
|
/* Set operation step depending if stop sending required or not */
|
|
if ((tx_length && !rx_length) || (!tx_length && rx_length)) {
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
// Trick to remove compiler warning "left and right operands are identical" in some cases
|
|
uint32_t op1 = I2C_FIRST_AND_LAST_FRAME;
|
|
uint32_t op2 = I2C_LAST_FRAME;
|
|
if ((obj_s->XferOperation == op1) || (obj_s->XferOperation == op2)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else if ((obj_s->XferOperation == I2C_FIRST_FRAME) ||
|
|
(obj_s->XferOperation == I2C_NEXT_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_NEXT_FRAME;
|
|
}
|
|
}
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
if ((obj_s->XferOperation == I2C_FIRST_FRAME) || (obj_s->XferOperation == I2C_FIRST_AND_LAST_FRAME) || (obj_s->XferOperation == I2C_LAST_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else {
|
|
// should not happend
|
|
error("I2C: abnormal case should not happend");
|
|
}
|
|
#endif
|
|
if (tx_length > 0) {
|
|
HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t *)tx, tx_length, obj_s->XferOperation);
|
|
}
|
|
if (rx_length > 0) {
|
|
HAL_I2C_Master_Sequential_Receive_IT(handle, address, (uint8_t *)rx, rx_length, obj_s->XferOperation);
|
|
}
|
|
} else if (tx_length && rx_length) {
|
|
/* Two steps operation, don't modify XferOperation, keep it for next step */
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
// Trick to remove compiler warning "left and right operands are identical" in some cases
|
|
uint32_t op1 = I2C_FIRST_AND_LAST_FRAME;
|
|
uint32_t op2 = I2C_LAST_FRAME;
|
|
if ((obj_s->XferOperation == op1) || (obj_s->XferOperation == op2)) {
|
|
HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t *)tx, tx_length, I2C_FIRST_FRAME);
|
|
} else if ((obj_s->XferOperation == I2C_FIRST_FRAME) ||
|
|
(obj_s->XferOperation == I2C_NEXT_FRAME)) {
|
|
HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t *)tx, tx_length, I2C_NEXT_FRAME);
|
|
}
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t *)tx, tx_length, I2C_FIRST_FRAME);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t i2c_irq_handler_asynch(i2c_t *obj)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
|
|
/* Return I2C event status */
|
|
return (obj_s->event & obj_s->available_events);
|
|
}
|
|
|
|
uint8_t i2c_active(i2c_t *obj)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
if (handle->State == HAL_I2C_STATE_READY) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void i2c_abort_asynch(i2c_t *obj)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
/* Abort HAL requires DevAddress, but is not used. Use Dummy */
|
|
uint16_t Dummy_DevAddress = 0x00;
|
|
|
|
HAL_I2C_Master_Abort_IT(handle, Dummy_DevAddress);
|
|
}
|
|
|
|
#endif // DEVICE_I2C_ASYNCH
|
|
|
|
#endif // DEVICE_I2C
|