mirror of https://github.com/ARMmbed/mbed-os.git
699 lines
21 KiB
C
699 lines
21 KiB
C
/* mbed Microcontroller Library
|
|
*******************************************************************************
|
|
* Copyright (c) 2017, STMicroelectronics
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*******************************************************************************
|
|
*/
|
|
|
|
#if DEVICE_SERIAL
|
|
|
|
#include "serial_api_hal.h"
|
|
|
|
#define UART_NUM (5)
|
|
|
|
uint32_t serial_irq_ids[UART_NUM] = {0};
|
|
UART_HandleTypeDef uart_handlers[UART_NUM];
|
|
|
|
static uart_irq_handler irq_handler;
|
|
|
|
// Defined in serial_api.c
|
|
extern int8_t get_uart_index(UARTName uart_name);
|
|
|
|
/******************************************************************************
|
|
* INTERRUPTS HANDLING
|
|
******************************************************************************/
|
|
|
|
static void uart_irq(UARTName uart_name)
|
|
{
|
|
int8_t id = get_uart_index(uart_name);
|
|
|
|
if (id >= 0) {
|
|
UART_HandleTypeDef *huart = &uart_handlers[id];
|
|
if (serial_irq_ids[id] != 0) {
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TXE) != RESET) {
|
|
if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TXE) != RESET) {
|
|
irq_handler(serial_irq_ids[id], TxIrq);
|
|
}
|
|
}
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) {
|
|
if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE) != RESET) {
|
|
irq_handler(serial_irq_ids[id], RxIrq);
|
|
/* Flag has been cleared when reading the content */
|
|
}
|
|
}
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
|
|
if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET) {
|
|
volatile uint32_t tmpval __attribute__((unused)) = huart->Instance->DR; // Clear ORE flag
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(USART1_BASE)
|
|
static void uart1_irq(void)
|
|
{
|
|
uart_irq(UART_1);
|
|
}
|
|
#endif
|
|
|
|
#if defined(USART2_BASE)
|
|
static void uart2_irq(void)
|
|
{
|
|
uart_irq(UART_2);
|
|
}
|
|
#endif
|
|
|
|
#if defined(USART3_BASE)
|
|
static void uart3_irq(void)
|
|
{
|
|
uart_irq(UART_3);
|
|
}
|
|
#endif
|
|
|
|
#if defined(UART4_BASE)
|
|
static void uart4_irq(void)
|
|
{
|
|
uart_irq(UART_4);
|
|
}
|
|
#endif
|
|
|
|
#if defined(UART5_BASE)
|
|
static void uart5_irq(void)
|
|
{
|
|
uart_irq(UART_5);
|
|
}
|
|
#endif
|
|
|
|
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
|
|
irq_handler = handler;
|
|
serial_irq_ids[obj_s->index] = id;
|
|
}
|
|
|
|
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
IRQn_Type irq_n = (IRQn_Type)0;
|
|
uint32_t vector = 0;
|
|
|
|
switch (obj_s->uart) {
|
|
#if defined(USART1_BASE)
|
|
case UART_1:
|
|
irq_n = USART1_IRQn;
|
|
vector = (uint32_t)&uart1_irq;
|
|
break;
|
|
#endif
|
|
#if defined(USART2_BASE)
|
|
case UART_2:
|
|
irq_n = USART2_IRQn;
|
|
vector = (uint32_t)&uart2_irq;
|
|
break;
|
|
#endif
|
|
#if defined(USART3_BASE)
|
|
case UART_3:
|
|
irq_n = USART3_IRQn;
|
|
vector = (uint32_t)&uart3_irq;
|
|
break;
|
|
#endif
|
|
#if defined(UART4_BASE)
|
|
case UART_4:
|
|
irq_n = UART4_IRQn;
|
|
vector = (uint32_t)&uart4_irq;
|
|
break;
|
|
#endif
|
|
#if defined(UART5_BASE)
|
|
case UART_5:
|
|
irq_n = UART5_IRQn;
|
|
vector = (uint32_t)&uart5_irq;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (enable) {
|
|
if (irq == RxIrq) {
|
|
__HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
|
|
} else { // TxIrq
|
|
__HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
|
|
}
|
|
NVIC_SetVector(irq_n, vector);
|
|
NVIC_EnableIRQ(irq_n);
|
|
|
|
} else { // disable
|
|
int all_disabled = 0;
|
|
if (irq == RxIrq) {
|
|
__HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
|
|
// Check if TxIrq is disabled too
|
|
if ((huart->Instance->CR1 & USART_CR1_TXEIE) == 0) {
|
|
all_disabled = 1;
|
|
}
|
|
} else { // TxIrq
|
|
__HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
|
|
// Check if RxIrq is disabled too
|
|
if ((huart->Instance->CR1 & USART_CR1_RXNEIE) == 0) {
|
|
all_disabled = 1;
|
|
}
|
|
}
|
|
|
|
if (all_disabled) {
|
|
NVIC_DisableIRQ(irq_n);
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* READ/WRITE
|
|
******************************************************************************/
|
|
|
|
int serial_getc(serial_t *obj)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
while (!serial_readable(obj));
|
|
if (obj_s->databits == UART_WORDLENGTH_8B) {
|
|
return (int)(huart->Instance->DR & (uint8_t)0xFF);
|
|
} else {
|
|
return (int)(huart->Instance->DR & (uint16_t)0x1FF);
|
|
}
|
|
}
|
|
|
|
void serial_putc(serial_t *obj, int c)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
while (!serial_writable(obj));
|
|
if (obj_s->databits == UART_WORDLENGTH_8B) {
|
|
huart->Instance->DR = (uint8_t)(c & (uint8_t)0xFF);
|
|
} else {
|
|
huart->Instance->DR = (uint16_t)(c & (uint16_t)0x1FF);
|
|
}
|
|
}
|
|
|
|
void serial_clear(serial_t *obj)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
huart->TxXferCount = 0;
|
|
huart->RxXferCount = 0;
|
|
}
|
|
|
|
void serial_break_set(serial_t *obj)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
HAL_LIN_SendBreak(huart);
|
|
}
|
|
|
|
#if DEVICE_SERIAL_ASYNCH
|
|
|
|
/******************************************************************************
|
|
* LOCAL HELPER FUNCTIONS
|
|
******************************************************************************/
|
|
|
|
/**
|
|
* Configure the TX buffer for an asynchronous write serial transaction
|
|
*
|
|
* @param obj The serial object.
|
|
* @param tx The buffer for sending.
|
|
* @param tx_length The number of words to transmit.
|
|
*/
|
|
static void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width)
|
|
{
|
|
(void)width;
|
|
|
|
// Exit if a transmit is already on-going
|
|
if (serial_tx_active(obj)) {
|
|
return;
|
|
}
|
|
|
|
obj->tx_buff.buffer = tx;
|
|
obj->tx_buff.length = tx_length;
|
|
obj->tx_buff.pos = 0;
|
|
}
|
|
|
|
/**
|
|
* Configure the RX buffer for an asynchronous write serial transaction
|
|
*
|
|
* @param obj The serial object.
|
|
* @param tx The buffer for sending.
|
|
* @param tx_length The number of words to transmit.
|
|
*/
|
|
static void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width)
|
|
{
|
|
(void)width;
|
|
|
|
// Exit if a reception is already on-going
|
|
if (serial_rx_active(obj)) {
|
|
return;
|
|
}
|
|
|
|
obj->rx_buff.buffer = rx;
|
|
obj->rx_buff.length = rx_length;
|
|
obj->rx_buff.pos = 0;
|
|
}
|
|
|
|
/**
|
|
* Configure events
|
|
*
|
|
* @param obj The serial object
|
|
* @param event The logical OR of the events to configure
|
|
* @param enable Set to non-zero to enable events, or zero to disable them
|
|
*/
|
|
static void serial_enable_event(serial_t *obj, int event, uint8_t enable)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
|
|
// Shouldn't have to enable interrupt here, just need to keep track of the requested events.
|
|
if (enable) {
|
|
obj_s->events |= event;
|
|
} else {
|
|
obj_s->events &= ~event;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Get index of serial object TX IRQ, relating it to the physical peripheral.
|
|
*
|
|
* @param uart_name i.e. UART_1, UART_2, ...
|
|
* @return internal NVIC TX IRQ index of U(S)ART peripheral
|
|
*/
|
|
static IRQn_Type serial_get_irq_n(UARTName uart_name)
|
|
{
|
|
IRQn_Type irq_n;
|
|
|
|
switch (uart_name) {
|
|
#if defined(USART1_BASE)
|
|
case UART_1:
|
|
irq_n = USART1_IRQn;
|
|
break;
|
|
#endif
|
|
#if defined(USART2_BASE)
|
|
case UART_2:
|
|
irq_n = USART2_IRQn;
|
|
break;
|
|
#endif
|
|
#if defined(USART3_BASE)
|
|
case UART_3:
|
|
irq_n = USART3_IRQn;
|
|
break;
|
|
#endif
|
|
#if defined(UART4_BASE)
|
|
case UART_4:
|
|
irq_n = UART4_IRQn;
|
|
break;
|
|
#endif
|
|
#if defined(UART5_BASE)
|
|
case UART_5:
|
|
irq_n = UART5_IRQn;
|
|
break;
|
|
#endif
|
|
default:
|
|
irq_n = (IRQn_Type)0;
|
|
}
|
|
|
|
return irq_n;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* MBED API FUNCTIONS
|
|
******************************************************************************/
|
|
|
|
/**
|
|
* Begin asynchronous TX transfer. The used buffer is specified in the serial
|
|
* object, tx_buff
|
|
*
|
|
* @param obj The serial object
|
|
* @param tx The buffer for sending
|
|
* @param tx_length The number of words to transmit
|
|
* @param tx_width The bit width of buffer word
|
|
* @param handler The serial handler
|
|
* @param event The logical OR of events to be registered
|
|
* @param hint A suggestion for how to use DMA with this transfer
|
|
* @return Returns number of data transfered, or 0 otherwise
|
|
*/
|
|
int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
|
|
{
|
|
// TODO: DMA usage is currently ignored
|
|
(void) hint;
|
|
|
|
// Check buffer is ok
|
|
MBED_ASSERT(tx != (void *)0);
|
|
MBED_ASSERT(tx_width == 8); // support only 8b width
|
|
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
if (tx_length == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// Set up buffer
|
|
serial_tx_buffer_set(obj, (void *)tx, tx_length, tx_width);
|
|
|
|
// Set up events
|
|
serial_enable_event(obj, SERIAL_EVENT_TX_ALL, 0); // Clear all events
|
|
serial_enable_event(obj, event, 1); // Set only the wanted events
|
|
|
|
// Enable interrupt
|
|
IRQn_Type irq_n = serial_get_irq_n(obj_s->uart);
|
|
NVIC_ClearPendingIRQ(irq_n);
|
|
NVIC_DisableIRQ(irq_n);
|
|
NVIC_SetPriority(irq_n, 1);
|
|
NVIC_SetVector(irq_n, (uint32_t)handler);
|
|
NVIC_EnableIRQ(irq_n);
|
|
|
|
// the following function will enable UART_IT_TXE and error interrupts
|
|
if (HAL_UART_Transmit_IT(huart, (uint8_t *)tx, tx_length) != HAL_OK) {
|
|
return 0;
|
|
}
|
|
|
|
return tx_length;
|
|
}
|
|
|
|
/**
|
|
* Begin asynchronous RX transfer (enable interrupt for data collecting)
|
|
* The used buffer is specified in the serial object, rx_buff
|
|
*
|
|
* @param obj The serial object
|
|
* @param rx The buffer for sending
|
|
* @param rx_length The number of words to transmit
|
|
* @param rx_width The bit width of buffer word
|
|
* @param handler The serial handler
|
|
* @param event The logical OR of events to be registered
|
|
* @param handler The serial handler
|
|
* @param char_match A character in range 0-254 to be matched
|
|
* @param hint A suggestion for how to use DMA with this transfer
|
|
*/
|
|
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
|
|
{
|
|
// TODO: DMA usage is currently ignored
|
|
(void) hint;
|
|
|
|
/* Sanity check arguments */
|
|
MBED_ASSERT(obj);
|
|
MBED_ASSERT(rx != (void *)0);
|
|
MBED_ASSERT(rx_width == 8); // support only 8b width
|
|
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
serial_enable_event(obj, SERIAL_EVENT_RX_ALL, 0);
|
|
serial_enable_event(obj, event, 1);
|
|
|
|
// set CharMatch
|
|
obj->char_match = char_match;
|
|
|
|
serial_rx_buffer_set(obj, rx, rx_length, rx_width);
|
|
|
|
IRQn_Type irq_n = serial_get_irq_n(obj_s->uart);
|
|
NVIC_ClearPendingIRQ(irq_n);
|
|
NVIC_DisableIRQ(irq_n);
|
|
NVIC_SetPriority(irq_n, 0);
|
|
NVIC_SetVector(irq_n, (uint32_t)handler);
|
|
NVIC_EnableIRQ(irq_n);
|
|
|
|
// following HAL function will enable the RXNE interrupt + error interrupts
|
|
HAL_UART_Receive_IT(huart, (uint8_t *)rx, rx_length);
|
|
}
|
|
|
|
/**
|
|
* Attempts to determine if the serial peripheral is already in use for TX
|
|
*
|
|
* @param obj The serial object
|
|
* @return Non-zero if the TX transaction is ongoing, 0 otherwise
|
|
*/
|
|
uint8_t serial_tx_active(serial_t *obj)
|
|
{
|
|
MBED_ASSERT(obj);
|
|
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
return (((HAL_UART_GetState(huart) & HAL_UART_STATE_BUSY_TX) == HAL_UART_STATE_BUSY_TX) ? 1 : 0);
|
|
}
|
|
|
|
/**
|
|
* Attempts to determine if the serial peripheral is already in use for RX
|
|
*
|
|
* @param obj The serial object
|
|
* @return Non-zero if the RX transaction is ongoing, 0 otherwise
|
|
*/
|
|
uint8_t serial_rx_active(serial_t *obj)
|
|
{
|
|
MBED_ASSERT(obj);
|
|
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
return (((HAL_UART_GetState(huart) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) ? 1 : 0);
|
|
}
|
|
|
|
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
|
|
}
|
|
}
|
|
|
|
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
|
|
{
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
|
|
volatile uint32_t tmpval __attribute__((unused)) = huart->Instance->DR; // Clear PE flag
|
|
} else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
|
|
volatile uint32_t tmpval __attribute__((unused)) = huart->Instance->DR; // Clear FE flag
|
|
} else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_NE) != RESET) {
|
|
volatile uint32_t tmpval __attribute__((unused)) = huart->Instance->DR; // Clear NE flag
|
|
} else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
|
|
volatile uint32_t tmpval __attribute__((unused)) = huart->Instance->DR; // Clear ORE flag
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The asynchronous TX and RX handler.
|
|
*
|
|
* @param obj The serial object
|
|
* @return Returns event flags if a TX/RX transfer termination condition was met or 0 otherwise
|
|
*/
|
|
int serial_irq_handler_asynch(serial_t *obj)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
volatile int return_event = 0;
|
|
uint8_t *buf = (uint8_t *)(obj->rx_buff.buffer);
|
|
size_t i = 0;
|
|
|
|
// TX PART:
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
|
|
if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) {
|
|
// Return event SERIAL_EVENT_TX_COMPLETE if requested
|
|
if ((obj_s->events & SERIAL_EVENT_TX_COMPLETE) != 0) {
|
|
return_event |= (SERIAL_EVENT_TX_COMPLETE & obj_s->events);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle error events
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
|
|
if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
|
|
return_event |= (SERIAL_EVENT_RX_PARITY_ERROR & obj_s->events);
|
|
}
|
|
}
|
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
|
|
if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
|
|
return_event |= (SERIAL_EVENT_RX_FRAMING_ERROR & obj_s->events);
|
|
}
|
|
}
|
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
|
|
if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
|
|
return_event |= (SERIAL_EVENT_RX_OVERRUN_ERROR & obj_s->events);
|
|
}
|
|
}
|
|
|
|
HAL_UART_IRQHandler(huart);
|
|
|
|
// Abort if an error occurs
|
|
if ((return_event & SERIAL_EVENT_RX_PARITY_ERROR) ||
|
|
(return_event & SERIAL_EVENT_RX_FRAMING_ERROR) ||
|
|
(return_event & SERIAL_EVENT_RX_OVERRUN_ERROR)) {
|
|
return return_event;
|
|
}
|
|
|
|
//RX PART
|
|
if (huart->RxXferSize != 0) {
|
|
obj->rx_buff.pos = huart->RxXferSize - huart->RxXferCount;
|
|
}
|
|
if ((huart->RxXferCount == 0) && (obj->rx_buff.pos >= (obj->rx_buff.length - 1))) {
|
|
return_event |= (SERIAL_EVENT_RX_COMPLETE & obj_s->events);
|
|
}
|
|
|
|
// Check if char_match is present
|
|
if (obj_s->events & SERIAL_EVENT_RX_CHARACTER_MATCH) {
|
|
if (buf != NULL) {
|
|
for (i = 0; i < obj->rx_buff.pos; i++) {
|
|
if (buf[i] == obj->char_match) {
|
|
obj->rx_buff.pos = i;
|
|
return_event |= (SERIAL_EVENT_RX_CHARACTER_MATCH & obj_s->events);
|
|
serial_rx_abort_asynch(obj);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return return_event;
|
|
}
|
|
|
|
/**
|
|
* Abort the ongoing TX transaction. It disables the enabled interupt for TX and
|
|
* flush TX hardware buffer if TX FIFO is used
|
|
*
|
|
* @param obj The serial object
|
|
*/
|
|
void serial_tx_abort_asynch(serial_t *obj)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
__HAL_UART_DISABLE_IT(huart, UART_IT_TC);
|
|
__HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
|
|
|
|
// clear flags
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
|
|
|
|
// reset states
|
|
huart->TxXferCount = 0;
|
|
// update handle state
|
|
if (huart->State == HAL_UART_STATE_BUSY_TX_RX) {
|
|
huart->State = HAL_UART_STATE_BUSY_RX;
|
|
} else {
|
|
huart->State = HAL_UART_STATE_READY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Abort the ongoing RX transaction It disables the enabled interrupt for RX and
|
|
* flush RX hardware buffer if RX FIFO is used
|
|
*
|
|
* @param obj The serial object
|
|
*/
|
|
void serial_rx_abort_asynch(serial_t *obj)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
|
|
|
|
// disable interrupts
|
|
__HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
|
|
__HAL_UART_DISABLE_IT(huart, UART_IT_PE);
|
|
__HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
|
|
|
|
// clear flags
|
|
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE);
|
|
volatile uint32_t tmpval __attribute__((unused)) = huart->Instance->DR; // Clear errors flag
|
|
|
|
// reset states
|
|
huart->RxXferCount = 0;
|
|
// update handle state
|
|
if (huart->State == HAL_UART_STATE_BUSY_TX_RX) {
|
|
huart->State = HAL_UART_STATE_BUSY_TX;
|
|
} else {
|
|
huart->State = HAL_UART_STATE_READY;
|
|
}
|
|
}
|
|
|
|
#endif /* DEVICE_SERIAL_ASYNCH */
|
|
|
|
#if DEVICE_SERIAL_FC
|
|
|
|
/**
|
|
* Set HW Control Flow
|
|
* @param obj The serial object
|
|
* @param type The Control Flow type (FlowControlNone, FlowControlRTS, FlowControlCTS, FlowControlRTSCTS)
|
|
* @param rxflow Pin for the rxflow
|
|
* @param txflow Pin for the txflow
|
|
*/
|
|
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
|
|
{
|
|
struct serial_s *obj_s = SERIAL_S(obj);
|
|
|
|
// Checked used UART name (UART_1, UART_2, ...)
|
|
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
|
|
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
|
|
if (((UARTName)pinmap_merge(uart_rts, obj_s->uart) == (UARTName)NC) || ((UARTName)pinmap_merge(uart_cts, obj_s->uart) == (UARTName)NC)) {
|
|
MBED_ASSERT(0);
|
|
return;
|
|
}
|
|
|
|
if (type == FlowControlNone) {
|
|
// Disable hardware flow control
|
|
obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
|
|
}
|
|
if (type == FlowControlRTS) {
|
|
// Enable RTS
|
|
MBED_ASSERT(uart_rts != (UARTName)NC);
|
|
obj_s->hw_flow_ctl = UART_HWCONTROL_RTS;
|
|
obj_s->pin_rts = rxflow;
|
|
// Enable the pin for RTS function
|
|
pinmap_pinout(rxflow, PinMap_UART_RTS);
|
|
}
|
|
if (type == FlowControlCTS) {
|
|
// Enable CTS
|
|
MBED_ASSERT(uart_cts != (UARTName)NC);
|
|
obj_s->hw_flow_ctl = UART_HWCONTROL_CTS;
|
|
obj_s->pin_cts = txflow;
|
|
// Enable the pin for CTS function
|
|
pinmap_pinout(txflow, PinMap_UART_CTS);
|
|
}
|
|
if (type == FlowControlRTSCTS) {
|
|
// Enable CTS & RTS
|
|
MBED_ASSERT(uart_rts != (UARTName)NC);
|
|
MBED_ASSERT(uart_cts != (UARTName)NC);
|
|
obj_s->hw_flow_ctl = UART_HWCONTROL_RTS_CTS;
|
|
obj_s->pin_rts = rxflow;
|
|
obj_s->pin_cts = txflow;
|
|
// Enable the pin for CTS function
|
|
pinmap_pinout(txflow, PinMap_UART_CTS);
|
|
// Enable the pin for RTS function
|
|
pinmap_pinout(rxflow, PinMap_UART_RTS);
|
|
}
|
|
|
|
init_uart(obj);
|
|
}
|
|
|
|
#endif /* DEVICE_SERIAL_FC */
|
|
|
|
#endif /* DEVICE_SERIAL */
|