mbed-os/targets/TARGET_STM/TARGET_STM32L1/analogin_api.c

251 lines
9.0 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2016, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mbed_assert.h"
#include "analogin_api.h"
#if DEVICE_ANALOGIN
#include "mbed_wait_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
int adc_inited = 0;
void analogin_init(analogin_t *obj, PinName pin)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
// Get the peripheral name from the pin and assign it to the object
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
MBED_ASSERT(obj->adc != (ADCName)NC);
// Get the pin function and assign the used channel to the object
uint32_t function = pinmap_function(pin, PinMap_ADC);
MBED_ASSERT(function != (uint32_t)NC);
obj->channel = STM_PIN_CHANNEL(function);
// Configure GPIO excepted for internal channels (Temperature, Vref, Vbat, ...)
// ADC Internal Channels "pins" are described in PinNames.h and must have a value >= 0xF0
if (pin < 0xF0) {
pinmap_pinout(pin, PinMap_ADC);
}
// Save pin number for the read function
obj->pin = pin;
// The ADC initialization is done once
if (adc_inited == 0) {
adc_inited = 1;
// Enable the HSI (to clock the ADC)
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
obj->handle.Instance = (ADC_TypeDef *)(obj->adc);
obj->handle.State = HAL_ADC_STATE_RESET;
// Enable ADC clock
__ADC1_CLK_ENABLE();
// Configure ADC
obj->handle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV4;
obj->handle.Init.Resolution = ADC_RESOLUTION12b;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = DISABLE; // Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1)
obj->handle.Init.EOCSelection = EOC_SINGLE_CONV; // On STM32L1xx ADC, overrun detection is enabled only if EOC selection is set to each conversion (or transfer by DMA enabled, this is not the case in this example).
obj->handle.Init.LowPowerAutoWait = ADC_AUTOWAIT_UNTIL_DATA_READ; // Enable the dynamic low power Auto Delay: new conversion start only when the previous conversion (for regular group) or previous sequence (for injected group) has been treated by user software.
obj->handle.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_IDLE_PHASE; // Enable the auto-off mode: the ADC automatically powers-off after a conversion and automatically wakes-up when a new conversion is triggered (with startup time between trigger and start of sampling).
obj->handle.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
obj->handle.Init.ContinuousConvMode = DISABLE; // Continuous mode disabled to have only 1 conversion at each conversion trig
obj->handle.Init.NbrOfConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.DiscontinuousConvMode = DISABLE; // Parameter discarded because sequencer is disabled
obj->handle.Init.NbrOfDiscConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.ExternalTrigConv = 0; // Not used
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
obj->handle.Init.DMAContinuousRequests = DISABLE;
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
}
}
static inline uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
obj->handle.Instance = (ADC_TypeDef *)(obj->adc);
// Configure ADC channel
switch (obj->channel) {
case 0:
sConfig.Channel = ADC_CHANNEL_0;
break;
case 1:
sConfig.Channel = ADC_CHANNEL_1;
break;
case 2:
sConfig.Channel = ADC_CHANNEL_2;
break;
case 3:
sConfig.Channel = ADC_CHANNEL_3;
break;
case 4:
sConfig.Channel = ADC_CHANNEL_4;
break;
case 5:
sConfig.Channel = ADC_CHANNEL_5;
break;
case 6:
sConfig.Channel = ADC_CHANNEL_6;
break;
case 7:
sConfig.Channel = ADC_CHANNEL_7;
break;
case 8:
sConfig.Channel = ADC_CHANNEL_8;
break;
case 9:
sConfig.Channel = ADC_CHANNEL_9;
break;
case 10:
sConfig.Channel = ADC_CHANNEL_10;
break;
case 11:
sConfig.Channel = ADC_CHANNEL_11;
break;
case 12:
sConfig.Channel = ADC_CHANNEL_12;
break;
case 13:
sConfig.Channel = ADC_CHANNEL_13;
break;
case 14:
sConfig.Channel = ADC_CHANNEL_14;
break;
case 15:
sConfig.Channel = ADC_CHANNEL_15;
break;
case 16:
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
break;
case 17:
sConfig.Channel = ADC_CHANNEL_VREFINT;
break;
case 18:
sConfig.Channel = ADC_CHANNEL_18;
break;
case 19:
sConfig.Channel = ADC_CHANNEL_19;
break;
case 20:
sConfig.Channel = ADC_CHANNEL_20;
break;
case 21:
sConfig.Channel = ADC_CHANNEL_21;
break;
case 22:
sConfig.Channel = ADC_CHANNEL_22;
break;
case 23:
sConfig.Channel = ADC_CHANNEL_23;
break;
case 24:
sConfig.Channel = ADC_CHANNEL_24;
break;
case 25:
sConfig.Channel = ADC_CHANNEL_25;
break;
case 26:
sConfig.Channel = ADC_CHANNEL_26;
break;
#ifdef ADC_CHANNEL_27
case 27:
sConfig.Channel = ADC_CHANNEL_27;
break;
#endif
#ifdef ADC_CHANNEL_28
case 28:
sConfig.Channel = ADC_CHANNEL_28;
break;
#endif
#ifdef ADC_CHANNEL_29
case 29:
sConfig.Channel = ADC_CHANNEL_29;
break;
#endif
#ifdef ADC_CHANNEL_30
case 30:
sConfig.Channel = ADC_CHANNEL_30;
break;
#endif
#ifdef ADC_CHANNEL_31
case 31:
sConfig.Channel = ADC_CHANNEL_31;
break;
#endif
default:
return 0;
}
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_16CYCLES;
HAL_ADC_ConfigChannel(&obj->handle, &sConfig);
HAL_ADC_Start(&obj->handle); // Start conversion
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (HAL_ADC_GetValue(&obj->handle));
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif