mbed-os/features/device_key/source/DeviceKey.cpp

302 lines
8.8 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DeviceKey.h"
#if DEVICEKEY_ENABLED
#include "mbedtls/config.h"
#include "mbedtls/cmac.h"
#include "mbedtls/platform.h"
#include "KVStore.h"
#include "TDBStore.h"
#include "KVMap.h"
#include "kv_config.h"
#include "mbed_wait_api.h"
#include "stdlib.h"
#include "platform/mbed_error.h"
#include <string.h>
#include "entropy.h"
#include "platform_mbed.h"
#include "mbed_trace.h"
#include "ssl_internal.h"
#define TRACE_GROUP "DEVKEY"
#if !defined(MBEDTLS_CMAC_C)
#error [NOT_SUPPORTED] MBEDTLS_CMAC_C needs to be enabled for this driver
#else
namespace mbed {
#define DEVKEY_WRITE_UINT32_LE( dst, src ) \
do \
{ \
(dst)[0] = ( (src) >> 0 ) & 0xFF; \
(dst)[1] = ( (src) >> 8 ) & 0xFF; \
(dst)[2] = ( (src) >> 16 ) & 0xFF; \
(dst)[3] = ( (src) >> 24 ) & 0xFF; \
} while( 0 )
#define DEVKEY_WRITE_UINT8_LE( dst, src ) \
do \
{ \
(dst)[0] = (src) & 0xFF; \
} while( 0 )
DeviceKey::DeviceKey()
{
int ret = kv_init_storage_config();
if (ret != MBED_SUCCESS) {
tr_error("DeviceKey: Fail to initialize KvStore configuration.");
}
#if defined(MBEDTLS_PLATFORM_C)
ret = mbedtls_platform_setup(NULL);
if (ret != MBED_SUCCESS) {
tr_error("DeviceKey: Fail in mbedtls_platform_setup.");
}
#endif /* MBEDTLS_PLATFORM_C */
return;
}
DeviceKey::~DeviceKey()
{
#if defined(MBEDTLS_PLATFORM_C)
mbedtls_platform_teardown(NULL);
#endif /* MBEDTLS_PLATFORM_C */
return;
}
int DeviceKey::generate_derived_key(const unsigned char *salt, size_t isalt_size, unsigned char *output,
uint16_t ikey_type)
{
uint32_t key_buff[DEVICE_KEY_32BYTE / sizeof(uint32_t)];
size_t actual_size = DEVICE_KEY_32BYTE;
if (DEVICE_KEY_16BYTE != ikey_type && DEVICE_KEY_32BYTE != ikey_type) {
return DEVICEKEY_INVALID_KEY_TYPE;
}
actual_size = DEVICE_KEY_16BYTE != ikey_type ? DEVICE_KEY_32BYTE : DEVICE_KEY_16BYTE;
//First try to read the key from KVStore
int ret = read_key_from_kvstore(key_buff, actual_size);
if (DEVICEKEY_SUCCESS != ret && DEVICEKEY_NOT_FOUND != ret) {
return ret;
}
//If the key was not found in KVStore we will create it by using random generation and then save it to KVStore
if (DEVICEKEY_NOT_FOUND == ret) {
ret = generate_key_by_random(key_buff, actual_size);
if (DEVICEKEY_SUCCESS != ret) {
return ret;
}
ret = device_inject_root_of_trust(key_buff, actual_size);
if (DEVICEKEY_SUCCESS != ret) {
return ret;
}
}
ret = get_derived_key(key_buff, actual_size, salt, isalt_size, output, ikey_type);
return ret;
}
int DeviceKey::device_inject_root_of_trust(uint32_t *value, size_t isize)
{
return write_key_to_kvstore(value, isize);
}
int DeviceKey::write_key_to_kvstore(uint32_t *input, size_t isize)
{
if (DEVICE_KEY_16BYTE != isize && DEVICE_KEY_32BYTE != isize) {
return DEVICEKEY_INVALID_KEY_SIZE;
}
//First we read if key exist. If it is exists, we return DEVICEKEY_ALREADY_EXIST error
uint32_t read_key[DEVICE_KEY_32BYTE / sizeof(uint32_t)] = {0};
size_t read_size = DEVICE_KEY_32BYTE;
int ret = read_key_from_kvstore(read_key, read_size);
if (DEVICEKEY_SUCCESS == ret) {
return DEVICEKEY_ALREADY_EXIST;
}
if (DEVICEKEY_NOT_FOUND != ret) {
return ret;
}
KVMap &kv_map = KVMap::get_instance();
KVStore *inner_store = kv_map.get_internal_kv_instance(NULL);
if (inner_store == NULL) {
return DEVICEKEY_SAVE_FAILED;
}
ret = ((TDBStore *)inner_store)->reserved_data_set(input, isize);
if (MBED_ERROR_WRITE_FAILED == ret) {
return DEVICEKEY_SAVE_FAILED;
}
if (MBED_SUCCESS != ret) {
return DEVICEKEY_KVSTORE_UNPREDICTED_ERROR;
}
return DEVICEKEY_SUCCESS;
}
int DeviceKey::read_key_from_kvstore(uint32_t *output, size_t &size)
{
if (size > (uint16_t) -1) {
return DEVICEKEY_INVALID_PARAM;
}
KVMap &kv_map = KVMap::get_instance();
KVStore *inner_store = kv_map.get_internal_kv_instance(NULL);
if (inner_store == NULL) {
return DEVICEKEY_NOT_FOUND;
}
int kvStatus = ((TDBStore *)inner_store)->reserved_data_get(output, size, &size);
if (MBED_ERROR_ITEM_NOT_FOUND == kvStatus) {
return DEVICEKEY_NOT_FOUND;
}
if (MBED_ERROR_READ_FAILED == kvStatus || MBED_ERROR_INVALID_SIZE == kvStatus) {
return DEVICEKEY_READ_FAILED;
}
if (MBED_SUCCESS != kvStatus) {
return DEVICEKEY_KVSTORE_UNPREDICTED_ERROR;
}
return DEVICEKEY_SUCCESS;
}
int DeviceKey::get_derived_key(uint32_t *ikey_buff, size_t ikey_size, const unsigned char *isalt,
size_t isalt_size, unsigned char *output, uint32_t ikey_type)
{
//KDF in counter mode implementation as described in Section 5.1
//of NIST SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions
int ret;
size_t counter = 0;
char separator = 0x00;
mbedtls_cipher_context_t ctx;
unsigned char output_len_enc[ 4 ] = {0};
unsigned char counter_enc[ 1 ] = {0};
DEVKEY_WRITE_UINT32_LE(output_len_enc, ikey_type);
mbedtls_cipher_type_t mbedtls_cipher_type = MBEDTLS_CIPHER_AES_128_ECB;
if (DEVICE_KEY_32BYTE == ikey_size) {
mbedtls_cipher_type = MBEDTLS_CIPHER_AES_256_ECB;
}
const mbedtls_cipher_info_t *cipher_info = mbedtls_cipher_info_from_type(mbedtls_cipher_type);
do {
mbedtls_cipher_init(&ctx);
ret = mbedtls_cipher_setup(&ctx, cipher_info);
if (ret != 0) {
goto finish;
}
ret = mbedtls_cipher_cmac_starts(&ctx, (unsigned char *)ikey_buff, ikey_size * 8);
if (ret != 0) {
goto finish;
}
DEVKEY_WRITE_UINT8_LE(counter_enc, (counter + 1));
ret = mbedtls_cipher_cmac_update(&ctx, (unsigned char *)counter_enc, sizeof(counter_enc));
if (ret != 0) {
goto finish;
}
ret = mbedtls_cipher_cmac_update(&ctx, isalt, isalt_size);
if (ret != 0) {
goto finish;
}
ret = mbedtls_cipher_cmac_update(&ctx, (unsigned char *)&separator, sizeof(char));
if (ret != 0) {
goto finish;
}
ret = mbedtls_cipher_cmac_update(&ctx, (unsigned char *)&output_len_enc, sizeof(output_len_enc));
if (ret != 0) {
goto finish;
}
ret = mbedtls_cipher_cmac_finish(&ctx, output + (DEVICE_KEY_16BYTE * (counter)));
if (ret != 0) {
goto finish;
}
mbedtls_cipher_free(&ctx);
counter++;
} while (DEVICE_KEY_16BYTE * counter < ikey_type);
finish:
if (DEVICEKEY_SUCCESS != ret) {
mbedtls_cipher_free(&ctx);
return DEVICEKEY_ERR_CMAC_GENERIC_FAILURE;
}
return DEVICEKEY_SUCCESS;
}
int DeviceKey::generate_key_by_random(uint32_t *output, size_t size)
{
int ret = DEVICEKEY_GENERATE_RANDOM_ERROR;
if (DEVICE_KEY_16BYTE > size) {
return DEVICEKEY_BUFFER_TOO_SMALL;
} else if (DEVICE_KEY_16BYTE != size && DEVICE_KEY_32BYTE != size) {
return DEVICEKEY_INVALID_PARAM;
}
#if defined(DEVICE_TRNG) || defined(MBEDTLS_ENTROPY_NV_SEED)
uint32_t test_buff[DEVICE_KEY_32BYTE / sizeof(int)];
mbedtls_entropy_context *entropy = new mbedtls_entropy_context;
mbedtls_entropy_init(entropy);
memset(output, 0, size);
memset(test_buff, 0, size);
ret = mbedtls_entropy_func(entropy, (unsigned char *)output, size);
if (ret != MBED_SUCCESS || mbedtls_ssl_safer_memcmp(test_buff, (unsigned char *)output, size) == 0) {
ret = DEVICEKEY_GENERATE_RANDOM_ERROR;
} else {
ret = DEVICEKEY_SUCCESS;
}
mbedtls_entropy_free(entropy);
delete entropy;
#endif
return ret;
}
} // namespace mbed
#endif
#endif