mbed-os/components/storage/blockdevice/COMPONENT_RSPIF/SPIFReducedBlockDevice.cpp

347 lines
8.8 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SPIFReducedBlockDevice.h"
#include "mbed_wait_api.h"
using namespace mbed;
// Read/write/erase sizes
#define SPIF_READ_SIZE 1
#define SPIF_PROG_SIZE 1
#define SPIF_SE_SIZE 4096
#define SPIF_TIMEOUT 10000
// Debug available
#define SPIF_DEBUG 0
// Legacy SFDP Instruction Table.
enum ops {
SPIF_NOP = 0x00, // No operation
SPIF_READ = 0x03, // Read data
SPIF_PROG = 0x02, // Program data
SPIF_SE = 0x20, // 4KB Sector Erase
SPIF_CE = 0xc7, // Chip Erase
SPIF_SFDP = 0x5a, // Read SFDP
SPIF_WREN = 0x06, // Write Enable
SPIF_WRDI = 0x04, // Write Disable
SPIF_RDSR = 0x05, // Read Status Register
SPIF_RDID = 0x9f, // Read Manufacturer and JDEC Device ID
};
// Status register from RDSR
// [---------| wel | wip ]
// [- 6 -| 1 | 1 ]
#define SPIF_WEL 0x2
#define SPIF_WIP 0x1
SPIFReducedBlockDevice::SPIFReducedBlockDevice(
PinName mosi, PinName miso, PinName sclk, PinName cs, int freq)
: _spi(mosi, miso, sclk), _cs(cs), _size(0)
{
_cs = 1;
_spi.frequency(freq);
}
int SPIFReducedBlockDevice::init()
{
// Check for vendor specific hacks, these should move into more general
// handling when possible. RDID is not used to verify a device is attached.
uint8_t id[3];
_cmdread(SPIF_RDID, 0, 3, 0x0, id);
switch (id[0]) {
case 0xbf:
// SST devices come preset with block protection
// enabled for some regions, issue gbpu instruction to clear
_wren();
_cmdwrite(0x98, 0, 0, 0x0, NULL);
break;
}
// Check that device is doing ok
int err = _sync();
if (err) {
return BD_ERROR_DEVICE_ERROR;
}
// Check JEDEC serial flash discoverable parameters for device
// specific info
uint8_t header[16];
_cmdread(SPIF_SFDP, 4, 16, 0x0, header);
// Verify SFDP signature for sanity
// Also check that major/minor version is acceptable
if (!(memcmp(&header[0], "SFDP", 4) == 0 && header[5] == 1)) {
return BD_ERROR_DEVICE_ERROR;
}
// The SFDP spec indicates the standard table is always at offset 0
// in the parameter headers, we check just to be safe
if (!(header[8] == 0 && header[10] == 1)) {
return BD_ERROR_DEVICE_ERROR;
}
// Parameter table pointer, spi commands are BE, SFDP is LE,
// also sfdp command expects extra read wait byte
// header 12-14 3 bytes building the parameter table address
uint32_t table_addr = (
(header[14] << 24) |
(header[13] << 16) |
(header[12] << 8));
uint8_t table[8];
_cmdread(SPIF_SFDP, 4, 8, table_addr, table);
// Check erase size, currently only supports 4kbytes
if ((table[0] & 0x3) != 0x1 || table[1] != SPIF_SE) {
// First byte of table, bits 0 and 1 = 0x1 indicating 4 KB Erase is supported
// Second Byte of table = Sector Erase Command (0x20)
return BD_ERROR_DEVICE_ERROR;
}
// Check address size, currently only supports 3byte addresses
if ((table[2] & 0x4) != 0 || (table[7] & 0x80) != 0) {
return BD_ERROR_DEVICE_ERROR;
}
// Get device density, stored as size in bits - 1
uint32_t density = (
(table[7] << 24) |
(table[6] << 16) |
(table[5] << 8) |
(table[4] << 0));
// Table bytes 5-8 : Bits 0|30 indicate Flash Density (size) in bits (divide by 8 for Bytes)
_size = (density / 8) + 1;
return 0;
}
int SPIFReducedBlockDevice::deinit()
{
// Latch write disable just to keep noise
// from changing the device
_cmdwrite(SPIF_WRDI, 0, 0, 0x0, NULL);
return 0;
}
void SPIFReducedBlockDevice::_cmdread(
uint8_t op, uint32_t addrc, uint32_t retc,
uint32_t addr, uint8_t *rets)
{
_cs = 0;
_spi.write(op);
for (uint32_t i = 0; i < addrc; i++) {
_spi.write(0xff & (addr >> 8 * (addrc - 1 - i)));
}
for (uint32_t i = 0; i < retc; i++) {
rets[i] = _spi.write(0);
}
_cs = 1;
if (SPIF_DEBUG) {
printf("spif <- %02x", op);
for (uint32_t i = 0; i < addrc; i++) {
if (i < addrc) {
printf("%02lx", 0xff & (addr >> 8 * (addrc - 1 - i)));
} else {
printf(" ");
}
}
printf(" ");
for (uint32_t i = 0; i < 16 && i < retc; i++) {
printf("%02x", rets[i]);
}
if (retc > 16) {
printf("...");
}
printf("\n");
}
}
void SPIFReducedBlockDevice::_cmdwrite(
uint8_t op, uint32_t addrc, uint32_t argc,
uint32_t addr, const uint8_t *args)
{
_cs = 0;
_spi.write(op);
for (uint32_t i = 0; i < addrc; i++) {
_spi.write(0xff & (addr >> 8 * (addrc - 1 - i)));
}
for (uint32_t i = 0; i < argc; i++) {
_spi.write(args[i]);
}
_cs = 1;
if (SPIF_DEBUG) {
printf("spif -> %02x", op);
for (uint32_t i = 0; i < addrc; i++) {
if (i < addrc) {
printf("%02lx", 0xff & (addr >> 8 * (addrc - 1 - i)));
} else {
printf(" ");
}
}
printf(" ");
for (uint32_t i = 0; i < 16 && i < argc; i++) {
printf("%02x", args[i]);
}
if (argc > 16) {
printf("...");
}
printf("\n");
}
}
int SPIFReducedBlockDevice::_sync()
{
for (int i = 0; i < SPIF_TIMEOUT; i++) {
// Read status register until write not-in-progress
uint8_t status;
_cmdread(SPIF_RDSR, 0, 1, 0x0, &status);
// Check WIP bit
if (!(status & SPIF_WIP)) {
return 0;
}
wait_ms(1);
}
return BD_ERROR_DEVICE_ERROR;
}
int SPIFReducedBlockDevice::_wren()
{
_cmdwrite(SPIF_WREN, 0, 0, 0x0, NULL);
for (int i = 0; i < SPIF_TIMEOUT; i++) {
// Read status register until write latch is enabled
uint8_t status;
_cmdread(SPIF_RDSR, 0, 1, 0x0, &status);
// Check WEL bit
if (status & SPIF_WEL) {
return 0;
}
wait_ms(1);
}
return BD_ERROR_DEVICE_ERROR;
}
int SPIFReducedBlockDevice::read(void *buffer, bd_addr_t addr, bd_size_t size)
{
// Check the address and size fit onto the chip.
MBED_ASSERT(is_valid_read(addr, size));
_cmdread(SPIF_READ, 3, size, addr, static_cast<uint8_t *>(buffer));
return 0;
}
int SPIFReducedBlockDevice::program(const void *buffer, bd_addr_t addr, bd_size_t size)
{
// Check the address and size fit onto the chip.
MBED_ASSERT(is_valid_program(addr, size));
while (size > 0) {
int err = _wren();
if (err) {
return err;
}
// Write up to 256 bytes a page
uint32_t off = addr % 256;
uint32_t chunk = (off + size < 256) ? size : (256 - off);
_cmdwrite(SPIF_PROG, 3, chunk, addr, static_cast<const uint8_t *>(buffer));
buffer = static_cast<const uint8_t *>(buffer) + chunk;
addr += chunk;
size -= chunk;
wait_ms(1);
err = _sync();
if (err) {
return err;
}
}
return 0;
}
int SPIFReducedBlockDevice::erase(bd_addr_t addr, bd_size_t size)
{
// Check the address and size fit onto the chip.
MBED_ASSERT(is_valid_erase(addr, size));
while (size > 0) {
int err = _wren();
if (err) {
return err;
}
// Erase 4kbyte sectors
uint32_t chunk = 4096;
_cmdwrite(SPIF_SE, 3, 0, addr, NULL);
addr += chunk;
size -= chunk;
err = _sync();
if (err) {
return err;
}
}
return 0;
}
bd_size_t SPIFReducedBlockDevice::get_read_size() const
{
return SPIF_READ_SIZE;
}
bd_size_t SPIFReducedBlockDevice::get_program_size() const
{
return SPIF_PROG_SIZE;
}
bd_size_t SPIFReducedBlockDevice::get_erase_size() const
{
return SPIF_SE_SIZE;
}
bd_size_t SPIFReducedBlockDevice::get_erase_size(bd_addr_t addr) const
{
return SPIF_SE_SIZE;
}
int SPIFReducedBlockDevice::get_erase_value() const
{
return 0xFF;
}
bd_size_t SPIFReducedBlockDevice::size() const
{
return _size;
}