mbed-os/targets/TARGET_Freescale/USBPhy_Kinetis.cpp

725 lines
21 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2018-2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(DEVICE_USBDEVICE) && DEVICE_USBDEVICE && \
(defined(TARGET_KL25Z) | defined(TARGET_KL43Z) | \
defined(TARGET_KL46Z) | \
defined(TARGET_K64F) | defined(TARGET_K22F) | defined(TARGET_K82F))
#if defined(TARGET_KSDK2_MCUS)
#include "fsl_common.h"
#endif
#include "USBPhyHw.h"
#include "USBEndpoints_Kinetis.h"
#include "mbed_critical.h"
#include "platform/mbed_power_mgmt.h"
#include "cmsis.h"
static USBPhyHw *instance;
static volatile int epComplete = 0;
// Convert physical endpoint number to register bit
#define EP(endpoint) (1<<(endpoint))
// Conversion macros
#define PHY_TO_LOG(endpoint) ((endpoint)>>1)
#define DESC_TO_LOG(endpoint) ((endpoint) & 0xF)
#define DESC_TO_PHY(endpoint) ((((endpoint)&0x0F)<<1) | (((endpoint) & 0x80) ? 1:0))
#define PHY_TO_DESC(endpoint) (((endpoint)>>1)|(((endpoint)&1)?0x80:0))
// Get endpoint direction
#define DESC_EP_IN(endpoint) ((endpoint) & 0x80U ? true : false)
#define DESC_EP_OUT(endpoint) ((endpoint) & 0x80U ? false : true)
#define BD_OWN_MASK (1<<7)
#define BD_DATA01_MASK (1<<6)
#define BD_KEEP_MASK (1<<5)
#define BD_NINC_MASK (1<<4)
#define BD_DTS_MASK (1<<3)
#define BD_STALL_MASK (1<<2)
#define TX 1
#define RX 0
#define ODD 0
#define EVEN 1
// this macro waits a physical endpoint number
#define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 * odd)))
#define SETUP_TOKEN 0x0D
#define IN_TOKEN 0x09
#define OUT_TOKEN 0x01
#define TOK_PID(idx) ((bdt[idx].info >> 2) & 0x0F)
// for each endpt: 8 bytes
typedef struct BDT {
uint8_t info; // BD[0:7]
uint8_t dummy; // RSVD: BD[8:15]
uint16_t byte_count; // BD[16:32]
uint32_t address; // Addr
} BDT;
typedef enum {
CTRL_XFER_READY,
CTRL_XFER_IN,
CTRL_XFER_NONE,
CTRL_XFER_OUT
} ctrl_xfer_t;
// there are:
// * 4 bidirectionnal endpt -> 8 physical endpt
// * as there are ODD and EVEN buffer -> 8*2 bdt
MBED_ALIGN(512) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2]; // 512 bytes aligned!
uint8_t *endpoint_buffer[NUMBER_OF_PHYSICAL_ENDPOINTS * 2];
uint8_t ep0_buffer[2][MAX_PACKET_SIZE_EP0];
uint8_t ep1_buffer[2][MAX_PACKET_SIZE_EP1];
uint8_t ep2_buffer[2][MAX_PACKET_SIZE_EP2];
uint8_t ep3_buffer[2][MAX_PACKET_SIZE_EP3];
static bool setup_suspend = false;
static uint8_t set_addr = 0;
static uint8_t addr = 0;
static ctrl_xfer_t ctrl_xfer = CTRL_XFER_READY;
static uint32_t Data1 = 0x55555555;
static uint32_t frameNumber()
{
return ((USB0->FRMNUML | (USB0->FRMNUMH << 8)) & 0x07FF);
}
USBPhy *get_usb_phy()
{
static USBPhyHw usbphy;
return &usbphy;
}
USBPhyHw::USBPhyHw(): events(NULL)
{
}
USBPhyHw::~USBPhyHw()
{
}
void USBPhyHw::init(USBPhyEvents *events)
{
if (this->events == NULL) {
sleep_manager_lock_deep_sleep();
}
this->events = events;
// Disable IRQ
NVIC_DisableIRQ(USB0_IRQn);
#if (defined(FSL_FEATURE_SOC_MPU_COUNT) && (FSL_FEATURE_SOC_MPU_COUNT > 0U))
MPU->CESR = 0;
#endif
#if (defined(FSL_FEATURE_SOC_SYSMPU_COUNT) && (FSL_FEATURE_SOC_SYSMPU_COUNT > 0U))
SYSMPU->CESR = 0;
#endif
#if defined(TARGET_KL43Z) || defined(TARGET_K22F) || defined(TARGET_K64F) || defined(TARGET_K82F)
// enable USBFS clock
CLOCK_EnableUsbfs0Clock(kCLOCK_UsbSrcIrc48M, 48000000U);
#else
// choose usb src as PLL
SIM->SOPT2 &= ~SIM_SOPT2_PLLFLLSEL_MASK;
SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | (1 << SIM_SOPT2_PLLFLLSEL_SHIFT));
// enable OTG clock
SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
#endif
// Attach IRQ
instance = this;
// USB Module Configuration
// Set BDT Base Register
USB0->BDTPAGE1 = (uint8_t)((uint32_t)bdt >> 8);
USB0->BDTPAGE2 = (uint8_t)((uint32_t)bdt >> 16);
USB0->BDTPAGE3 = (uint8_t)((uint32_t)bdt >> 24);
// Clear interrupt flag
USB0->ISTAT = 0xff;
// USB Interrupt Enablers
USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK |
USB_INTEN_ERROREN_MASK |
USB_INTEN_USBRSTEN_MASK;
// Disable weak pull downs
USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK);
USB0->USBTRC0 |= 0x40;
/* Allocate control endpoint buffers */
endpoint_buffer[EP_BDT_IDX(0, TX, ODD)] = ep0_buffer[TX];
endpoint_buffer[EP_BDT_IDX(0, RX, ODD)] = ep0_buffer[RX];
endpoint_buffer[EP_BDT_IDX(1, TX, ODD)] = ep1_buffer[TX];
endpoint_buffer[EP_BDT_IDX(1, RX, ODD)] = ep1_buffer[RX];
endpoint_buffer[EP_BDT_IDX(2, TX, ODD)] = ep2_buffer[TX];
endpoint_buffer[EP_BDT_IDX(2, RX, ODD)] = ep2_buffer[RX];
endpoint_buffer[EP_BDT_IDX(3, TX, ODD)] = ep3_buffer[TX];
endpoint_buffer[EP_BDT_IDX(3, RX, ODD)] = ep3_buffer[RX];
NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr);
NVIC_EnableIRQ(USB0_IRQn);
}
void USBPhyHw::deinit()
{
disconnect();
NVIC_DisableIRQ(USB0_IRQn);
USB0->INTEN = 0;
if (events != NULL) {
sleep_manager_unlock_deep_sleep();
}
events = NULL;
}
bool USBPhyHw::powered()
{
return true;
}
void USBPhyHw::connect()
{
// enable USB
USB0->CTL |= USB_CTL_USBENSOFEN_MASK;
// Pull up enable
USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
}
void USBPhyHw::disconnect()
{
// disable all endpoints to prevent them from nacking when disconnected
for (int i = 0; i < 16; i++) {
USB0->ENDPOINT[i].ENDPT = 0x00;
}
// disable USB
USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK;
// Pull up disable
USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
while (USB0->ISTAT) {
USB0->ISTAT = 0xFF;
}
}
void USBPhyHw::configure()
{
// not needed
}
void USBPhyHw::unconfigure()
{
// not needed
}
void USBPhyHw::sof_enable()
{
USB0->INTEN |= USB_INTEN_SOFTOKEN_MASK;
}
void USBPhyHw::sof_disable()
{
USB0->INTEN &= ~USB_INTEN_SOFTOKEN_MASK;
}
void USBPhyHw::set_address(uint8_t address)
{
// we don't set the address now otherwise the usb controller does not ack
// we set a flag instead
// see usbisr when an IN token is received
set_addr = 1;
addr = address;
}
void USBPhyHw::remote_wakeup()
{
// TODO
}
#define ALLOW_BULK_OR_INT_ENDPOINTS (USB_EP_ATTR_ALLOW_BULK | USB_EP_ATTR_ALLOW_INT)
#define ALLOW_NO_ENDPOINTS 0
const usb_ep_table_t *USBPhyHw::endpoint_table()
{
static const usb_ep_table_t endpoint_table = {
1, // No cost per endpoint - everything allocated up front
{
{USB_EP_ATTR_ALLOW_CTRL | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_BULK_OR_INT_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_BULK_OR_INT_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{USB_EP_ATTR_ALLOW_ISO | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0},
{ALLOW_NO_ENDPOINTS | USB_EP_ATTR_DIR_IN_AND_OUT, 0, 0}
}
};
return &endpoint_table;
}
uint32_t USBPhyHw::ep0_set_max_packet(uint32_t max_packet)
{
return MAX_PACKET_SIZE_EP0;
}
// read setup packet
void USBPhyHw::ep0_setup_read_result(uint8_t *buffer, uint32_t size)
{
uint32_t sz;
endpoint_read_result_core(EP0OUT, buffer, size, &sz);
}
void USBPhyHw::ep0_read(uint8_t *data, uint32_t size)
{
if (ctrl_xfer == CTRL_XFER_READY) {
// Transfer is done so ignore call
return;
}
if (ctrl_xfer == CTRL_XFER_IN) {
ctrl_xfer = CTRL_XFER_READY;
// Control transfer with a data IN stage.
// The next packet received will be the status packet - an OUT packet using DATA1
//
// PROBLEM:
// If a Setup packet is received after status packet of
// a Control In transfer has been received in the RX buffer
// but before the processor has had a chance the prepare
// this buffer for the Setup packet, the Setup packet
// will be dropped.
//
// WORKAROUND:
// Set data toggle to DATA0 so if the status stage of a
// Control In transfer arrives it will be ACKed by hardware
// but will be discarded without filling the RX buffer.
// This allows a subsequent SETUP packet to be stored
// without any processor intervention.
Data1 &= ~1UL; // set DATA0
endpoint_read_core(EP0OUT, MAX_PACKET_SIZE_EP0);
} else {
endpoint_read(EP0OUT, data, size);
}
// Clear suspend after the setup stage
if (setup_suspend) {
USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
setup_suspend = false;
}
}
uint32_t USBPhyHw::ep0_read_result()
{
return endpoint_read_result(EP0OUT);
}
void USBPhyHw::ep0_write(uint8_t *buffer, uint32_t size)
{
if (ctrl_xfer == CTRL_XFER_READY) {
// Transfer is done so ignore call
return;
}
if ((ctrl_xfer == CTRL_XFER_NONE) || (ctrl_xfer == CTRL_XFER_OUT)) {
// Prepare for next setup packet
endpoint_read_core(EP0OUT, MAX_PACKET_SIZE_EP0);
ctrl_xfer = CTRL_XFER_READY;
}
endpoint_write(EP0IN, buffer, size);
// Clear suspend after the setup stage
if (setup_suspend) {
USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
setup_suspend = false;
}
}
void USBPhyHw::ep0_stall()
{
if (ctrl_xfer == CTRL_XFER_READY) {
// Transfer is done so ignore call
return;
}
ctrl_xfer = CTRL_XFER_READY;
// Clear suspend after the setup stage
if (setup_suspend) {
USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
setup_suspend = false;
}
core_util_critical_section_enter();
endpoint_stall(EP0OUT);
// Prepare for next setup packet
// Note - time between stalling and setting up the endpoint
// must be kept to a minimum to prevent a dropped SETUP
// packet.
endpoint_read_core(EP0OUT, MAX_PACKET_SIZE_EP0);
core_util_critical_section_exit();
}
bool USBPhyHw::endpoint_add(usb_ep_t endpoint, uint32_t max_packet, usb_ep_type_t type)
{
uint32_t handshake_flag = 0;
uint8_t *buf;
if (DESC_TO_PHY(endpoint) > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
return false;
}
uint32_t log_endpoint = DESC_TO_LOG(endpoint);
if (type != USB_EP_TYPE_ISO) {
handshake_flag = USB_ENDPT_EPHSHK_MASK;
}
if (DESC_EP_IN(endpoint)) {
buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)][0];
} else {
buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)][0];
}
// IN endpt -> device to host (TX)
if (DESC_EP_IN(endpoint)) {
bdt[EP_BDT_IDX(log_endpoint, TX, ODD)].address = (uint32_t) buf;
bdt[EP_BDT_IDX(log_endpoint, TX, ODD)].info = 0;
bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0;
USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint)
USB_ENDPT_EPTXEN_MASK; // en TX (IN) tran
}
// OUT endpt -> host to device (RX)
else {
bdt[EP_BDT_IDX(log_endpoint, RX, ODD)].byte_count = max_packet;
bdt[EP_BDT_IDX(log_endpoint, RX, ODD)].address = (uint32_t) buf;
bdt[EP_BDT_IDX(log_endpoint, RX, ODD)].info = BD_DTS_MASK;
bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info = 0;
if (log_endpoint == 0) {
// Prepare for setup packet
bdt[EP_BDT_IDX(log_endpoint, RX, ODD)].info |= BD_OWN_MASK;
}
USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint)
USB_ENDPT_EPRXEN_MASK; // en RX (OUT) tran.
}
// First transfer will be a DATA0 packet
Data1 &= ~(1 << DESC_TO_PHY(endpoint));
return true;
}
void USBPhyHw::endpoint_remove(usb_ep_t endpoint)
{
USB0->ENDPOINT[DESC_TO_LOG(endpoint)].ENDPT = 0;
}
void USBPhyHw::endpoint_stall(usb_ep_t endpoint)
{
USB0->ENDPOINT[DESC_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK;
}
void USBPhyHw::endpoint_unstall(usb_ep_t endpoint)
{
// Next transfer will be a DATA0 packet
Data1 &= ~(1 << DESC_TO_PHY(endpoint));
USB0->ENDPOINT[DESC_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
}
bool USBPhyHw::endpoint_read(usb_ep_t endpoint, uint8_t *data, uint32_t size)
{
uint8_t log = DESC_TO_LOG(endpoint);
read_buffers[log] = data;
read_sizes[log] = size;
return endpoint_read_core(endpoint, size);
}
bool USBPhyHw::endpoint_read_core(usb_ep_t endpoint, uint32_t max_packet)
{
uint8_t log_endpoint = DESC_TO_LOG(endpoint);
uint32_t idx = EP_BDT_IDX(log_endpoint, RX, 0);
bdt[idx].byte_count = max_packet;
if ((Data1 >> DESC_TO_PHY(endpoint)) & 1) {
bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
} else {
bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
}
Data1 ^= (1 << DESC_TO_PHY(endpoint));
return true;
}
uint32_t USBPhyHw::endpoint_read_result(usb_ep_t endpoint)
{
uint8_t log = DESC_TO_LOG(endpoint);
uint32_t bytes_read = 0;
endpoint_read_result_core(endpoint, read_buffers[log], read_sizes[log], &bytes_read);
read_buffers[log] = NULL;
read_sizes[log] = 0;
return bytes_read;
}
bool USBPhyHw::endpoint_read_result_core(usb_ep_t endpoint, uint8_t *data, uint32_t size, uint32_t *bytes_read)
{
uint32_t n, sz, idx, setup = 0;
uint8_t not_iso;
uint8_t *ep_buf;
uint32_t log_endpoint = DESC_TO_LOG(endpoint);
if (DESC_TO_PHY(endpoint) > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
return false;
}
// if read on a IN endpoint -> error
if (DESC_EP_IN(endpoint)) {
return false;
}
idx = EP_BDT_IDX(log_endpoint, RX, 0);
sz = bdt[idx].byte_count;
not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK;
//for isochronous endpoint, we don't wait an interrupt
if ((log_endpoint != 0) && not_iso && !(epComplete & EP(DESC_TO_PHY(endpoint)))) {
return false;
}
if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) {
setup = 1;
}
ep_buf = endpoint_buffer[idx];
for (n = 0; n < sz; n++) {
data[n] = ep_buf[n];
}
if (setup) {
// Record the setup type
if ((data[6] == 0) && (data[7] == 0)) {
ctrl_xfer = CTRL_XFER_NONE;
} else {
uint8_t in_xfer = (data[0] >> 7) & 1;
ctrl_xfer = in_xfer ? CTRL_XFER_IN : CTRL_XFER_OUT;
}
}
*bytes_read = sz;
epComplete &= ~EP(DESC_TO_PHY(endpoint));
return true;
}
bool USBPhyHw::endpoint_write(usb_ep_t endpoint, uint8_t *data, uint32_t size)
{
uint32_t idx, n;
uint8_t *ep_buf;
if (DESC_TO_PHY(endpoint) > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
return false;
}
// if write on a OUT endpoint -> error
if (DESC_EP_OUT(endpoint)) {
return false;
}
idx = EP_BDT_IDX(DESC_TO_LOG(endpoint), TX, 0);
bdt[idx].byte_count = size;
ep_buf = endpoint_buffer[idx];
for (n = 0; n < size; n++) {
ep_buf[n] = data[n];
}
if ((Data1 >> DESC_TO_PHY(endpoint)) & 1) {
bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
} else {
bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
}
Data1 ^= (1 << DESC_TO_PHY(endpoint));
return true;
}
void USBPhyHw::endpoint_abort(usb_ep_t endpoint)
{
uint8_t dir = DESC_EP_IN(endpoint) ? TX : RX;
uint32_t idx = EP_BDT_IDX(DESC_TO_LOG(endpoint), dir, 0);
bdt[idx].info &= ~BD_OWN_MASK;
}
void USBPhyHw::process()
{
uint8_t i;
uint8_t istat = USB0->ISTAT & USB0->INTEN;
// reset interrupt
if (istat & USB_ISTAT_USBRST_MASK) {
// disable all endpt
for (i = 0; i < 16; i++) {
USB0->ENDPOINT[i].ENDPT = 0x00;
}
// enable control endpoint
setup_suspend = false;
endpoint_add(EP0OUT, MAX_PACKET_SIZE_EP0, USB_EP_TYPE_CTRL);
endpoint_add(EP0IN, MAX_PACKET_SIZE_EP0, USB_EP_TYPE_CTRL);
Data1 = 0x55555555;
USB0->CTL |= USB_CTL_ODDRST_MASK;
USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
USB0->ISTAT = 0xFF; // clear all interrupt status flags
USB0->ERRSTAT = 0xFF; // clear all error flags
USB0->ERREN = 0xFF; // enable error interrupt sources
USB0->ADDR = 0x00; // set default address
memset(read_buffers, 0, sizeof(read_buffers));
memset(read_sizes, 0, sizeof(read_sizes));
// reset bus for USBDevice layer
events->reset();
NVIC_ClearPendingIRQ(USB0_IRQn);
NVIC_EnableIRQ(USB0_IRQn);
return;
}
// resume interrupt
if (istat & USB_ISTAT_RESUME_MASK) {
USB0->ISTAT = USB_ISTAT_RESUME_MASK;
events->suspend(false);
}
// SOF interrupt
if (istat & USB_ISTAT_SOFTOK_MASK) {
USB0->ISTAT = USB_ISTAT_SOFTOK_MASK;
// SOF event, read frame number
events->sof(frameNumber());
}
// stall interrupt
if (istat & 1 << 7) {
if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK) {
USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
}
USB0->ISTAT = USB_ISTAT_STALL_MASK;
}
// token interrupt
if (istat & USB_ISTAT_TOKDNE_MASK) {
uint32_t num = (USB0->STAT >> 4) & 0x0F;
uint32_t dir = (USB0->STAT >> 3) & 0x01;
uint32_t ev_odd = (USB0->STAT >> 2) & 0x01;
int phy_ep = (num << 1) | dir;
bool tx_en = (USB0->ENDPOINT[PHY_TO_LOG(phy_ep)].ENDPT & USB_ENDPT_EPTXEN_MASK) ? true : false;
bool rx_en = (USB0->ENDPOINT[PHY_TO_LOG(phy_ep)].ENDPT & USB_ENDPT_EPRXEN_MASK) ? true : false;
// setup packet
if (tx_en && (num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) {
setup_suspend = true;
Data1 |= 0x02 | 0x01; // set DATA1 for TX and RX
bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK;
bdt[EP_BDT_IDX(0, TX, ODD)].info &= ~BD_OWN_MASK;
// EP0 SETUP event (SETUP data received)
events->ep0_setup();
} else {
// OUT packet
if (rx_en && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN)) {
if (num == 0) {
events->ep0_out();
} else {
epComplete |= EP(phy_ep);
events->out(PHY_TO_DESC(phy_ep));
}
}
// IN packet
if (tx_en && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN)) {
if (num == 0) {
events->ep0_in();
if (set_addr == 1) {
USB0->ADDR = addr & 0x7F;
set_addr = 0;
}
} else {
epComplete |= EP(phy_ep);
events->in(PHY_TO_DESC(phy_ep));
}
}
}
USB0->ISTAT = USB_ISTAT_TOKDNE_MASK;
}
// sleep interrupt
if (istat & 1 << 4) {
USB0->ISTAT = USB_ISTAT_SLEEP_MASK;
events->suspend(true);
}
// error interrupt
if (istat & USB_ISTAT_ERROR_MASK) {
USB0->ERRSTAT = 0xFF;
USB0->ISTAT = USB_ISTAT_ERROR_MASK;
}
// Check if the suspend condition should be removed here
// 1. Don't attempt to clear USB_CTL_TXSUSPENDTOKENBUSY_MASK if it isn't set. This
// is to avoid potential race conditions.
// 2. If a setup packet is being processed then remove suspend on the next control transfer rather than here
// 3. Process all pending packets before removing suspend
bool suspended = (USB0->CTL & USB_CTL_TXSUSPENDTOKENBUSY_MASK) != 0;
if (suspended && !setup_suspend && ((USB0->ISTAT & USB_ISTAT_TOKDNE_MASK) == 0)) {
USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
}
NVIC_ClearPendingIRQ(USB0_IRQn);
NVIC_EnableIRQ(USB0_IRQn);
}
void USBPhyHw::_usbisr(void)
{
NVIC_DisableIRQ(USB0_IRQn);
instance->events->start_process();
}
#endif