mbed-os/targets/TARGET_STM/stm_spi_api.c

1920 lines
60 KiB
C

/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2015, STMicroelectronics
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "mbed_assert.h"
#include "mbed_error.h"
#include "mbed_debug.h"
#include "mbed_critical.h"
#include "mbed_wait_api.h"
#include "spi_api.h"
#if DEVICE_SPI
#include <stdbool.h>
#include <math.h>
#include <string.h>
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "spi_device.h"
#include "stm_spi_api.h"
#ifdef STM32_SPI_CAPABILITY_DMA
#include "stm_dma_info.h"
#endif
#if DEVICE_SPI_ASYNCH
#define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi.spi))
#else
#define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi))
#endif
#if DEVICE_SPI_ASYNCH
#define SPI_S(obj) (( struct spi_s *)(&(obj->spi)))
#else
#define SPI_S(obj) (( struct spi_s *)(obj))
#endif
#ifndef DEBUG_STDIO
# define DEBUG_STDIO 0
#endif
#if DEBUG_STDIO
# include <stdio.h>
# define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0)
#else
# define DEBUG_PRINTF(...) {}
#endif
/* Consider 10ms as the default timeout for sending/receving 1 byte */
#define TIMEOUT_1_BYTE 10
#if defined(SPI_DATASIZE_17BIT) || defined(SPI_DATASIZE_18BIT) || defined(SPI_DATASIZE_19BIT) || defined(SPI_DATASIZE_20BIT) || \
defined(SPI_DATASIZE_21BIT) || defined(SPI_DATASIZE_22BIT) || defined(SPI_DATASIZE_23BIT) || defined(SPI_DATASIZE_24BIT) || \
defined(SPI_DATASIZE_25BIT) || defined(SPI_DATASIZE_26BIT) || defined(SPI_DATASIZE_27BIT) || defined(SPI_DATASIZE_28BIT) || \
defined(SPI_DATASIZE_29BIT) || defined(SPI_DATASIZE_30BIT) || defined(SPI_DATASIZE_31BIT) || defined(SPI_DATASIZE_32BIT)
#define HAS_32BIT_SPI_TRANSFERS 1
#endif // SPI_DATASIZE_X
// SPI IRQ handlers
#if defined SPI1_BASE
static SPI_HandleTypeDef * spi1Handle; // Handle of whatever SPI structure is used for SPI1
void SPI1_IRQHandler()
{
HAL_SPI_IRQHandler(spi1Handle);
}
#endif
#if defined SPI2_BASE
static SPI_HandleTypeDef * spi2Handle; // Handle of whatever SPI structure is used for SPI2
void SPI2_IRQHandler()
{
HAL_SPI_IRQHandler(spi2Handle);
}
#endif
#if defined SPI3_BASE
static SPI_HandleTypeDef * spi3Handle; // Handle of whatever SPI structure is used for SPI3
void SPI3_IRQHandler()
{
HAL_SPI_IRQHandler(spi3Handle);
}
#endif
#if defined SPI4_BASE
static SPI_HandleTypeDef * spi4Handle; // Handle of whatever SPI structure is used for SPI4
void SPI4_IRQHandler()
{
HAL_SPI_IRQHandler(spi4Handle);
}
#endif
#if defined SPI5_BASE
static SPI_HandleTypeDef * spi5Handle; // Handle of whatever SPI structure is used for SPI5
void SPI5_IRQHandler()
{
HAL_SPI_IRQHandler(spi5Handle);
}
#endif
#if defined SPI6_BASE
static SPI_HandleTypeDef * spi6Handle; // Handle of whatever SPI structure is used for SPI6
void SPI6_IRQHandler()
{
HAL_SPI_IRQHandler(spi6Handle);
}
#endif
/**
* Flush RX FIFO/input register of SPI interface and clear overrun flag.
*/
static inline void spi_flush_rx(spi_t *obj)
{
#if defined(SPI_FLAG_FRLVL)
HAL_SPIEx_FlushRxFifo(&(SPI_S(obj)->handle));
#endif
LL_SPI_ClearFlag_OVR(SPI_INST(obj));
}
// Store the spi_s * inside an SPI handle, for later retrieval in callbacks
static inline void store_spis_pointer(SPI_HandleTypeDef * spiHandle, struct spi_s * spis) {
// Annoyingly, STM neglected to provide any sort of "user data" pointer inside SPI_HandleTypeDef for use
// in callbacks. However, there are some variables in the Init struct that are never accessed after HAL_SPI_Init().
// So, we can reuse those to store our pointer.
spiHandle->Init.TIMode = (uint32_t)spis;
}
// Get spi_s * from SPI_HandleTypeDef
static inline struct spi_s * get_spis_pointer(SPI_HandleTypeDef * spiHandle) {
return (struct spi_s *) spiHandle->Init.TIMode;
}
void spi_get_capabilities(PinName ssel, bool slave, spi_capabilities_t *cap)
{
if (slave) {
cap->minimum_frequency = 200000; // 200 kHz
cap->maximum_frequency = 2000000; // 2 MHz
cap->word_length = 0x00008080; // 8 and 16 bit symbols
cap->support_slave_mode = false; // to be determined later based on ssel
cap->hw_cs_handle = false; // irrelevant in slave mode
cap->slave_delay_between_symbols_ns = 2500; // 2.5 us
cap->clk_modes = 0x0f; // all clock modes
cap->tx_rx_buffers_equal_length = false; // rx/tx buffers can have different sizes
#if DEVICE_SPI_ASYNCH
cap->async_mode = true;
#else
cap->async_mode = false;
#endif
} else {
cap->minimum_frequency = 200000; // 200 kHz
cap->maximum_frequency = 2000000; // 2 MHz
cap->word_length = STM32_SPI_CAPABILITY_WORD_LENGTH; // Defined in spi_device.h
cap->support_slave_mode = false; // to be determined later based on ssel
cap->hw_cs_handle = false; // to be determined later based on ssel
cap->slave_delay_between_symbols_ns = 0; // irrelevant in master mode
cap->clk_modes = 0x0f; // all clock modes
cap->tx_rx_buffers_equal_length = false; // rx/tx buffers can have different sizes
#if DEVICE_SPI_ASYNCH
cap->async_mode = true;
#else
cap->async_mode = false;
#endif
}
// check if given ssel pin is in the cs pinmap
const PinMap *cs_pins = spi_master_cs_pinmap();
while (cs_pins->pin != NC) {
if (cs_pins->pin == ssel) {
#if DEVICE_SPISLAVE
cap->support_slave_mode = true;
#endif
cap->hw_cs_handle = true;
break;
}
cs_pins++;
}
}
void init_spi(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
__HAL_SPI_DISABLE(handle);
// Reset flag used by store_spis_pointer()
handle->Init.TIMode = SPI_TIMODE_DISABLE;
DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance);
if (HAL_SPI_Init(handle) != HAL_OK) {
error("Cannot initialize SPI");
}
store_spis_pointer(handle, spiobj);
/* In some cases after SPI object re-creation SPI overrun flag may not
* be cleared, so clear RX data explicitly to prevent any transmissions errors */
spi_flush_rx(obj);
/* In case of standard 4 wires SPI,PI can be kept enabled all time
* and SCK will only be generated during the write operations. But in case
* of 3 wires, it should be only enabled during rd/wr unitary operations,
* which is handled inside STM32 HAL layer.
*/
if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
__HAL_SPI_ENABLE(handle);
}
}
SPIName spi_get_peripheral_name(PinName mosi, PinName miso, PinName sclk)
{
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_per;
// MISO or MOSI may be not connected
if (miso == NC) {
spi_per = (SPIName)pinmap_merge(spi_mosi, spi_sclk);
} else if (mosi == NC) {
spi_per = (SPIName)pinmap_merge(spi_miso, spi_sclk);
} else {
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
spi_per = (SPIName)pinmap_merge(spi_data, spi_sclk);
}
return spi_per;
}
#if STATIC_PINMAP_READY
#define SPI_INIT_DIRECT spi_init_direct
void spi_init_direct(spi_t *obj, const spi_pinmap_t *pinmap)
#else
#define SPI_INIT_DIRECT _spi_init_direct
static void _spi_init_direct(spi_t *obj, const spi_pinmap_t *pinmap)
#endif
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
spiobj->spi = (SPIName)pinmap->peripheral;
MBED_ASSERT(spiobj->spi != (SPIName)NC);
#if defined(SPI_IP_VERSION_V2)
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
#endif /* SPI_IP_VERSION_V2 */
#ifdef DEVICE_SPI_ASYNCH
spiobj->driverCallback = NULL;
#endif
#if defined SPI1_BASE
// Enable SPI clock
if (spiobj->spi == SPI_1) {
#if defined(SPI_IP_VERSION_V2)
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI1;
#if defined (RCC_SPI123CLKSOURCE_PLL)
PeriphClkInit.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL;
#elif defined (RCC_SPI1CLKSOURCE_SYSCLK)
PeriphClkInit.Spi1ClockSelection = RCC_SPI1CLKSOURCE_SYSCLK;
#else
PeriphClkInit.Spi1ClockSelection = RCC_SPI1CLKSOURCE_PLL1Q;
#endif
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
error("HAL_RCCEx_PeriphCLKConfig\n");
}
#endif /* SPI_IP_VERSION_V2 */
__HAL_RCC_SPI1_FORCE_RESET();
__HAL_RCC_SPI1_RELEASE_RESET();
__HAL_RCC_SPI1_CLK_ENABLE();
spiobj->spiIRQ = SPI1_IRQn;
spiobj->spiIndex = 1;
spi1Handle = &spiobj->handle;
}
#endif
#if defined SPI2_BASE
if (spiobj->spi == SPI_2) {
#if defined(SPI_IP_VERSION_V2)
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI2;
#if defined (RCC_SPI123CLKSOURCE_PLL)
PeriphClkInit.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL;
#elif defined (RCC_SPI2CLKSOURCE_SYSCLK)
PeriphClkInit.Spi2ClockSelection = RCC_SPI2CLKSOURCE_SYSCLK;
#else
PeriphClkInit.Spi2ClockSelection = RCC_SPI2CLKSOURCE_PLL1Q;
#endif
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
error("HAL_RCCEx_PeriphCLKConfig\n");
}
#endif /* SPI_IP_VERSION_V2 */
__HAL_RCC_SPI2_FORCE_RESET();
__HAL_RCC_SPI2_RELEASE_RESET();
__HAL_RCC_SPI2_CLK_ENABLE();
spiobj->spiIRQ = SPI2_IRQn;
spiobj->spiIndex = 2;
spi2Handle = &spiobj->handle;
}
#endif
#if defined SPI3_BASE
if (spiobj->spi == SPI_3) {
#if defined(SPI_IP_VERSION_V2)
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI3;
#if defined (RCC_SPI123CLKSOURCE_PLL)
PeriphClkInit.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL;
#elif defined (RCC_SPI2CLKSOURCE_SYSCLK)
PeriphClkInit.Spi3ClockSelection = RCC_SPI3CLKSOURCE_SYSCLK;
#else
PeriphClkInit.Spi3ClockSelection = RCC_SPI3CLKSOURCE_PLL1Q;
#endif
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
error("HAL_RCCEx_PeriphCLKConfig\n");
}
#endif /* SPI_IP_VERSION_V2 */
__HAL_RCC_SPI3_FORCE_RESET();
__HAL_RCC_SPI3_RELEASE_RESET();
__HAL_RCC_SPI3_CLK_ENABLE();
spiobj->spiIRQ = SPI3_IRQn;
spiobj->spiIndex = 3;
spi3Handle = &spiobj->handle;
}
#endif
#if defined SPI4_BASE
if (spiobj->spi == SPI_4) {
#if defined(SPI_IP_VERSION_V2)
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI4;
#if defined RCC_SPI45CLKSOURCE_PCLK1
PeriphClkInit.Spi45ClockSelection = RCC_SPI45CLKSOURCE_PCLK1;
#else
PeriphClkInit.Spi4ClockSelection = RCC_SPI4CLKSOURCE_PCLK2;
#endif
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
error("HAL_RCCEx_PeriphCLKConfig\n");
}
#endif /* SPI_IP_VERSION_V2 */
__HAL_RCC_SPI4_FORCE_RESET();
__HAL_RCC_SPI4_RELEASE_RESET();
__HAL_RCC_SPI4_CLK_ENABLE();
spiobj->spiIRQ = SPI4_IRQn;
spiobj->spiIndex = 4;
spi4Handle = &spiobj->handle;
}
#endif
#if defined SPI5_BASE
if (spiobj->spi == SPI_5) {
#if defined(SPI_IP_VERSION_V2)
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI5;
#if defined RCC_SPI45CLKSOURCE_PCLK1
PeriphClkInit.Spi45ClockSelection = RCC_SPI45CLKSOURCE_PCLK1;
#else
PeriphClkInit.Spi5ClockSelection = RCC_SPI5CLKSOURCE_PCLK3;
#endif
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
error("HAL_RCCEx_PeriphCLKConfig\n");
}
#endif /* SPI_IP_VERSION_V2 */
__HAL_RCC_SPI5_FORCE_RESET();
__HAL_RCC_SPI5_RELEASE_RESET();
__HAL_RCC_SPI5_CLK_ENABLE();
spiobj->spiIRQ = SPI5_IRQn;
spiobj->spiIndex = 5;
spi5Handle = &spiobj->handle;
}
#endif
#if defined SPI6_BASE
if (spiobj->spi == SPI_6) {
#if defined(SPI_IP_VERSION_V2)
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SPI6;
#if defined RCC_SPI6CLKSOURCE_PCLK4
PeriphClkInit.Spi6ClockSelection = RCC_SPI6CLKSOURCE_PCLK4;
#else
PeriphClkInit.Spi6ClockSelection = RCC_SPI6CLKSOURCE_PCLK2;
#endif
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
error("HAL_RCCEx_PeriphCLKConfig\n");
}
#endif /* SPI_IP_VERSION_V2 */
__HAL_RCC_SPI6_FORCE_RESET();
__HAL_RCC_SPI6_RELEASE_RESET();
__HAL_RCC_SPI6_CLK_ENABLE();
spiobj->spiIRQ = SPI6_IRQn;
spiobj->spiIndex = 6;
spi6Handle = &spiobj->handle;
}
#endif
// Configure the SPI pins
pin_function(pinmap->mosi_pin, pinmap->mosi_function);
pin_mode(pinmap->mosi_pin, PullDown); // Pull Down is set for output line
pin_function(pinmap->miso_pin, pinmap->miso_function);
pin_mode(pinmap->miso_pin, PullNone);
pin_function(pinmap->sclk_pin, pinmap->sclk_function);
pin_mode(pinmap->sclk_pin, PullNone);
spiobj->pin_miso = pinmap->miso_pin;
spiobj->pin_mosi = pinmap->mosi_pin;
spiobj->pin_sclk = pinmap->sclk_pin;
spiobj->pin_ssel = pinmap->ssel_pin;
if (pinmap->ssel_pin != NC) {
pin_function(pinmap->ssel_pin, pinmap->ssel_function);
pin_mode(pinmap->ssel_pin, PullNone);
handle->Init.NSS = SPI_NSS_HARD_OUTPUT;
#if defined(SPI_NSS_PULSE_ENABLE)
handle->Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
#endif
} else {
handle->Init.NSS = SPI_NSS_SOFT;
#if defined(SPI_NSS_PULSE_DISABLE)
handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
#endif
}
/* Fill default value */
handle->Instance = SPI_INST(obj);
handle->Init.Mode = SPI_MODE_MASTER;
handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
if (pinmap->miso_pin != NC) {
handle->Init.Direction = SPI_DIRECTION_2LINES;
} else {
handle->Init.Direction = SPI_DIRECTION_1LINE;
}
handle->Init.CLKPhase = SPI_PHASE_1EDGE;
handle->Init.CLKPolarity = SPI_POLARITY_LOW;
handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
handle->Init.CRCPolynomial = 7;
#if defined(SPI_CRC_LENGTH_DATASIZE)
handle->Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
#endif
handle->Init.DataSize = SPI_DATASIZE_8BIT;
handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
#if defined (SPI_IP_VERSION_V2)
handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
#if defined(SPI_RDY_MASTER_MANAGEMENT_INTERNALLY)
handle->Init.ReadyMasterManagement = SPI_RDY_MASTER_MANAGEMENT_INTERNALLY;
handle->Init.ReadyPolarity = SPI_RDY_POLARITY_HIGH;
#endif
#endif /* SPI_IP_VERSION_V2 */
/*
* According the STM32 Datasheet for SPI peripheral we need to PULLDOWN
* or PULLUP the SCK pin according the polarity used.
*/
pin_mode(spiobj->pin_sclk, (handle->Init.CLKPolarity == SPI_POLARITY_LOW) ? PullDown : PullUp);
init_spi(obj);
}
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
// determine the SPI to use
uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
int peripheral = (int)pinmap_merge(spi_data, spi_cntl);
// pin out the spi pins
int mosi_function = (int)pinmap_find_function(mosi, PinMap_SPI_MOSI);
int miso_function = (int)pinmap_find_function(miso, PinMap_SPI_MISO);
int sclk_function = (int)pinmap_find_function(sclk, PinMap_SPI_SCLK);
int ssel_function = (int)pinmap_find_function(ssel, PinMap_SPI_SSEL);
const spi_pinmap_t explicit_spi_pinmap = {peripheral, mosi, mosi_function, miso, miso_function, sclk, sclk_function, ssel, ssel_function};
SPI_INIT_DIRECT(obj, &explicit_spi_pinmap);
}
#if STM32_SPI_CAPABILITY_DMA
/**
* Initialize the DMA for an SPI object in the Tx direction.
* Does nothing if DMA is already initialized.
*/
static void spi_init_tx_dma(struct spi_s * obj)
{
if(!obj->txDMAInitialized)
{
#ifdef TARGET_MCU_STM32H7
// For STM32H7, SPI6 does not support DMA through the normal mechanism -- it would require use of the BDMA
// controller, which we don't currently support, and which can only access data in SRAM4.
if(obj->spiIndex == 6)
{
mbed_error(MBED_ERROR_UNSUPPORTED, "DMA not supported on SPI6!", 0, MBED_FILENAME, __LINE__);
}
#endif
// Get DMA handle
DMALinkInfo const *dmaLink = &SPITxDMALinks[obj->spiIndex - 1];
// Initialize DMA channel
DMA_HandleTypeDef *dmaHandle = stm_init_dma_link(dmaLink, DMA_MEMORY_TO_PERIPH, false, true, 1, 1);
if(dmaHandle == NULL)
{
mbed_error(MBED_ERROR_ALREADY_IN_USE, "Tx DMA channel already used by something else!", 0, MBED_FILENAME, __LINE__);
}
__HAL_LINKDMA(&obj->handle, hdmatx, *dmaHandle);
obj->txDMAInitialized = true;
}
}
/**
* Initialize the DMA for an SPI object in the Rx direction.
* Does nothing if DMA is already initialized.
*/
static void spi_init_rx_dma(struct spi_s * obj)
{
if(!obj->rxDMAInitialized)
{
#ifdef TARGET_MCU_STM32H7
// For STM32H7, SPI6 does not support DMA through the normal mechanism -- it would require use of the BDMA
// controller, which we don't currently support, and which can only access data in SRAM4.
if(obj->spiIndex == 6)
{
mbed_error(MBED_ERROR_UNSUPPORTED, "DMA not supported on SPI6!", 0, MBED_FILENAME, __LINE__);
}
#endif
// Get DMA handle
DMALinkInfo const *dmaLink = &SPIRxDMALinks[obj->spiIndex - 1];
// Initialize DMA channel
DMA_HandleTypeDef *dmaHandle = stm_init_dma_link(dmaLink, DMA_PERIPH_TO_MEMORY, false, true, 1, 1);
if(dmaHandle == NULL)
{
mbed_error(MBED_ERROR_ALREADY_IN_USE, "Rx DMA channel already used by something else!", 0, MBED_FILENAME, __LINE__);
}
__HAL_LINKDMA(&obj->handle, hdmarx, *dmaHandle);
obj->rxDMAInitialized = true;
}
}
#endif
void spi_free(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
DEBUG_PRINTF("spi_free\r\n");
#if STM32_SPI_CAPABILITY_DMA
// Free DMA channels if allocated
if(spiobj->txDMAInitialized)
{
stm_free_dma_link(&SPITxDMALinks[spiobj->spiIndex - 1]);
spiobj->txDMAInitialized = false;
}
if(spiobj->rxDMAInitialized)
{
stm_free_dma_link(&SPIRxDMALinks[spiobj->spiIndex - 1]);
spiobj->rxDMAInitialized = false;
}
#endif
__HAL_SPI_DISABLE(handle);
HAL_SPI_DeInit(handle);
#if defined(DUAL_CORE) && (TARGET_STM32H7)
while (LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID)) {
}
#endif /* DUAL_CORE */
#if defined SPI1_BASE
// Reset SPI and disable clock
if (spiobj->spi == SPI_1) {
__HAL_RCC_SPI1_FORCE_RESET();
__HAL_RCC_SPI1_RELEASE_RESET();
__HAL_RCC_SPI1_CLK_DISABLE();
}
#endif
#if defined SPI2_BASE
if (spiobj->spi == SPI_2) {
__HAL_RCC_SPI2_FORCE_RESET();
__HAL_RCC_SPI2_RELEASE_RESET();
__HAL_RCC_SPI2_CLK_DISABLE();
}
#endif
#if defined SPI3_BASE
if (spiobj->spi == SPI_3) {
__HAL_RCC_SPI3_FORCE_RESET();
__HAL_RCC_SPI3_RELEASE_RESET();
__HAL_RCC_SPI3_CLK_DISABLE();
}
#endif
#if defined SPI4_BASE
if (spiobj->spi == SPI_4) {
__HAL_RCC_SPI4_FORCE_RESET();
__HAL_RCC_SPI4_RELEASE_RESET();
__HAL_RCC_SPI4_CLK_DISABLE();
}
#endif
#if defined SPI5_BASE
if (spiobj->spi == SPI_5) {
__HAL_RCC_SPI5_FORCE_RESET();
__HAL_RCC_SPI5_RELEASE_RESET();
__HAL_RCC_SPI5_CLK_DISABLE();
}
#endif
#if defined SPI6_BASE
if (spiobj->spi == SPI_6) {
__HAL_RCC_SPI6_FORCE_RESET();
__HAL_RCC_SPI6_RELEASE_RESET();
__HAL_RCC_SPI6_CLK_DISABLE();
}
#endif
#if defined(DUAL_CORE) && (TARGET_STM32H7)
LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, HSEM_CR_COREID_CURRENT);
#endif /* DUAL_CORE */
// Configure GPIOs back to reset value
pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
if (handle->Init.NSS != SPI_NSS_SOFT) {
pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
}
}
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
PinMode pull = PullNone;
DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave);
// Save new values
uint32_t DataSize;
switch (bits) {
#if defined(SPI_DATASIZE_4BIT)
case 4:
DataSize = SPI_DATASIZE_4BIT;
break;
#endif
#if defined(SPI_DATASIZE_5BIT)
case 5:
DataSize = SPI_DATASIZE_5BIT;
break;
#endif
#if defined(SPI_DATASIZE_6BIT)
case 6:
DataSize = SPI_DATASIZE_6BIT;
break;
#endif
#if defined(SPI_DATASIZE_7BIT)
case 7:
DataSize = SPI_DATASIZE_7BIT;
break;
#endif
#if defined(SPI_DATASIZE_9BIT)
case 9:
DataSize = SPI_DATASIZE_9BIT;
break;
#endif
#if defined(SPI_DATASIZE_10BIT)
case 10:
DataSize = SPI_DATASIZE_10BIT;
break;
#endif
#if defined(SPI_DATASIZE_11BIT)
case 11:
DataSize = SPI_DATASIZE_11BIT;
break;
#endif
#if defined(SPI_DATASIZE_12BIT)
case 12:
DataSize = SPI_DATASIZE_12BIT;
break;
#endif
#if defined(SPI_DATASIZE_13BIT)
case 13:
DataSize = SPI_DATASIZE_13BIT;
break;
#endif
#if defined(SPI_DATASIZE_14BIT)
case 14:
DataSize = SPI_DATASIZE_14BIT;
break;
#endif
#if defined(SPI_DATASIZE_15BIT)
case 15:
DataSize = SPI_DATASIZE_15BIT;
break;
#endif
#if defined(SPI_DATASIZE_17BIT)
case 17:
DataSize = SPI_DATASIZE_17BIT;
break;
#endif
#if defined(SPI_DATASIZE_18BIT)
case 18:
DataSize = SPI_DATASIZE_18BIT;
break;
#endif
#if defined(SPI_DATASIZE_19BIT)
case 19:
DataSize = SPI_DATASIZE_19BIT;
break;
#endif
#if defined(SPI_DATASIZE_20BIT)
case 20:
DataSize = SPI_DATASIZE_20BIT;
break;
#endif
#if defined(SPI_DATASIZE_21BIT)
case 21:
DataSize = SPI_DATASIZE_21BIT;
break;
#endif
#if defined(SPI_DATASIZE_22BIT)
case 22:
DataSize = SPI_DATASIZE_22BIT;
break;
#endif
#if defined(SPI_DATASIZE_23BIT)
case 23:
DataSize = SPI_DATASIZE_23BIT;
break;
#endif
#if defined(SPI_DATASIZE_24BIT)
case 24:
DataSize = SPI_DATASIZE_24BIT;
break;
#endif
#if defined(SPI_DATASIZE_25BIT)
case 25:
DataSize = SPI_DATASIZE_25BIT;
break;
#endif
#if defined(SPI_DATASIZE_26BIT)
case 26:
DataSize = SPI_DATASIZE_26BIT;
break;
#endif
#if defined(SPI_DATASIZE_27BIT)
case 27:
DataSize = SPI_DATASIZE_27BIT;
break;
#endif
#if defined(SPI_DATASIZE_28BIT)
case 28:
DataSize = SPI_DATASIZE_28BIT;
break;
#endif
#if defined(SPI_DATASIZE_29BIT)
case 29:
DataSize = SPI_DATASIZE_29BIT;
break;
#endif
#if defined(SPI_DATASIZE_30BIT)
case 30:
DataSize = SPI_DATASIZE_30BIT;
break;
#endif
#if defined(SPI_DATASIZE_31BIT)
case 31:
DataSize = SPI_DATASIZE_31BIT;
break;
#endif
#if defined(SPI_DATASIZE_32BIT)
case 32:
DataSize = SPI_DATASIZE_32BIT;
break;
#endif
case 16:
DataSize = SPI_DATASIZE_16BIT;
break;
// 8 bits is the default for anything not found before
default:
DataSize = SPI_DATASIZE_8BIT;
break;
}
handle->Init.DataSize = DataSize;
switch (mode) {
case 0:
handle->Init.CLKPolarity = SPI_POLARITY_LOW;
handle->Init.CLKPhase = SPI_PHASE_1EDGE;
break;
case 1:
handle->Init.CLKPolarity = SPI_POLARITY_LOW;
handle->Init.CLKPhase = SPI_PHASE_2EDGE;
break;
case 2:
handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
handle->Init.CLKPhase = SPI_PHASE_1EDGE;
break;
default:
handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
handle->Init.CLKPhase = SPI_PHASE_2EDGE;
break;
}
if (handle->Init.NSS != SPI_NSS_SOFT) {
handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT;
}
if (slave) {
handle->Init.Mode = SPI_MODE_SLAVE;
if (handle->Init.Direction == SPI_DIRECTION_1LINE) {
/* SPI slave implemtation in MBED does not support the 3 wires SPI.
* (e.g. when MISO is not connected). So we're forcing slave in
* 2LINES mode. As MISO is not connected, slave will only read
* from master, and cannot write to it.
*/
handle->Init.Direction = SPI_DIRECTION_2LINES;
}
pin_mode(spiobj->pin_mosi, PullNone);
pin_mode(spiobj->pin_miso, PullDown); // Pull Down is set for output line
}
/*
* According the STM32 Datasheet for SPI peripheral we need to PULLDOWN
* or PULLUP the SCK pin according the polarity used.
*/
pull = (handle->Init.CLKPolarity == SPI_POLARITY_LOW) ? PullDown : PullUp;
pin_mode(spiobj->pin_sclk, pull);
init_spi(obj);
}
/*
* Only the IP clock input is family dependant so it computed
* separately in spi_get_clock_freq
*/
extern int spi_get_clock_freq(spi_t *obj);
static const uint32_t baudrate_prescaler_table[] = {SPI_BAUDRATEPRESCALER_2,
SPI_BAUDRATEPRESCALER_4,
SPI_BAUDRATEPRESCALER_8,
SPI_BAUDRATEPRESCALER_16,
SPI_BAUDRATEPRESCALER_32,
SPI_BAUDRATEPRESCALER_64,
SPI_BAUDRATEPRESCALER_128,
SPI_BAUDRATEPRESCALER_256
};
/**
* Convert SPI_BAUDRATEPRESCALER_<X> constant into numeric prescaler rank.
*/
static uint8_t spi_get_baudrate_prescaler_rank(uint32_t value)
{
switch (value) {
case SPI_BAUDRATEPRESCALER_2:
return 0;
case SPI_BAUDRATEPRESCALER_4:
return 1;
case SPI_BAUDRATEPRESCALER_8:
return 2;
case SPI_BAUDRATEPRESCALER_16:
return 3;
case SPI_BAUDRATEPRESCALER_32:
return 4;
case SPI_BAUDRATEPRESCALER_64:
return 5;
case SPI_BAUDRATEPRESCALER_128:
return 6;
case SPI_BAUDRATEPRESCALER_256:
return 7;
default:
return 0xFF;
}
}
/**
* Get actual SPI baudrate.
*
* It may differ from a value that is passed to the ::spi_frequency function.
*/
int spi_get_baudrate(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
int freq = spi_get_clock_freq(obj);
uint8_t baudrate_rank = spi_get_baudrate_prescaler_rank(handle->Init.BaudRatePrescaler);
MBED_ASSERT(baudrate_rank != 0xFF);
return freq >> (baudrate_rank + 1);
}
void spi_frequency(spi_t *obj, int hz)
{
struct spi_s *spiobj = SPI_S(obj);
int spi_hz = 0;
uint8_t prescaler_rank = 0;
uint8_t last_index = (sizeof(baudrate_prescaler_table) / sizeof(baudrate_prescaler_table[0])) - 1;
SPI_HandleTypeDef *handle = &(spiobj->handle);
/* Calculate the spi clock for prescaler_rank 0: SPI_BAUDRATEPRESCALER_2 */
spi_hz = spi_get_clock_freq(obj) / 2;
/* Define pre-scaler in order to get highest available frequency below requested frequency */
while ((spi_hz > hz) && (prescaler_rank < last_index)) {
spi_hz = spi_hz / 2;
prescaler_rank++;
}
/* Use the best fit pre-scaler */
handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank];
/* In case maximum pre-scaler still gives too high freq, raise an error */
if (spi_hz > hz) {
DEBUG_PRINTF("WARNING: lowest SPI freq (%d) higher than requested (%d)\r\n", spi_hz, hz);
}
DEBUG_PRINTF("spi_frequency, request:%d, select:%d\r\n", hz, spi_hz);
init_spi(obj);
}
static inline int ssp_readable(spi_t *obj)
{
int status;
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
// Check if data is received
#if defined(SPI_IP_VERSION_V2)
status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXP) != RESET) ? 1 : 0);
#else /* SPI_IP_VERSION_V2 */
status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
#endif /* SPI_IP_VERSION_V2 */
return status;
}
static inline int ssp_writeable(spi_t *obj)
{
int status;
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
// Check if data is transmitted
#if defined(SPI_IP_VERSION_V2)
status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXP) != RESET) ? 1 : 0);
#else /* SPI_IP_VERSION_V2 */
status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
#endif /* SPI_IP_VERSION_V2 */
return status;
}
static inline int ssp_busy(spi_t *obj)
{
int status;
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
#if defined(SPI_IP_VERSION_V2)
status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXWNE) != RESET) ? 1 : 0);
#else /* SPI_IP_VERSION_V2 */
status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
#endif /* SPI_IP_VERSION_V2 */
return status;
}
static inline int datasize_to_transfer_bitshift(uint32_t DataSize)
{
switch (DataSize) {
#if defined(SPI_DATASIZE_4BIT)
case SPI_DATASIZE_4BIT:
#endif
#if defined(SPI_DATASIZE_5BIT)
case SPI_DATASIZE_5BIT:
#endif
#if defined(SPI_DATASIZE_6BIT)
case SPI_DATASIZE_6BIT:
#endif
#if defined(SPI_DATASIZE_7BIT)
case SPI_DATASIZE_7BIT:
#endif
case SPI_DATASIZE_8BIT:
return 0;
#if defined(SPI_DATASIZE_9BIT)
case SPI_DATASIZE_9BIT:
#endif
#if defined(SPI_DATASIZE_10BIT)
case SPI_DATASIZE_10BIT:
#endif
#if defined(SPI_DATASIZE_11BIT)
case SPI_DATASIZE_11BIT:
#endif
#if defined(SPI_DATASIZE_12BIT)
case SPI_DATASIZE_12BIT:
#endif
#if defined(SPI_DATASIZE_13BIT)
case SPI_DATASIZE_13BIT:
#endif
#if defined(SPI_DATASIZE_14BIT)
case SPI_DATASIZE_14BIT:
#endif
#if defined(SPI_DATASIZE_15BIT)
case SPI_DATASIZE_15BIT:
#endif
case SPI_DATASIZE_16BIT:
return 1;
#if defined(SPI_DATASIZE_17BIT)
case SPI_DATASIZE_17BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_18BIT)
case SPI_DATASIZE_18BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_19BIT)
case SPI_DATASIZE_19BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_20BIT)
case SPI_DATASIZE_20BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_21BIT)
case SPI_DATASIZE_21BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_22BIT)
case SPI_DATASIZE_22BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_23BIT)
case SPI_DATASIZE_23BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_24BIT)
case SPI_DATASIZE_24BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_25BIT)
case SPI_DATASIZE_25BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_26BIT)
case SPI_DATASIZE_26BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_27BIT)
case SPI_DATASIZE_27BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_28BIT)
case SPI_DATASIZE_28BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_29BIT)
case SPI_DATASIZE_29BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_30BIT)
case SPI_DATASIZE_30BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_31BIT)
case SPI_DATASIZE_31BIT:
return 2;
#endif
#if defined(SPI_DATASIZE_32BIT)
case SPI_DATASIZE_32BIT:
return 2;
#endif
// This point should never be reached, so return a negative value for assertion checking
default:
return -1;
}
}
static inline int spi_get_word_from_buffer(const void *buffer, int bitshift)
{
if (bitshift == 1) {
return *((uint16_t *)buffer);
#ifdef HAS_32BIT_SPI_TRANSFERS
} else if (bitshift == 2) {
return *((uint32_t *)buffer);
#endif /* HAS_32BIT_SPI_TRANSFERS */
} else {
return *((uint8_t *)buffer);
}
}
static inline void spi_put_word_to_buffer(void *buffer, int bitshift, int data)
{
if (bitshift == 1) {
*((uint16_t *)buffer) = data;
#ifdef HAS_32BIT_SPI_TRANSFERS
} else if (bitshift == 2) {
*((uint32_t *)buffer) = data;
#endif /* HAS_32BIT_SPI_TRANSFERS */
} else {
*((uint8_t *)buffer) = data;
}
}
/**
* Check if SPI master interface is writable.
*
* @param obj
* @return 0 - SPI isn't writable, non-zero - SPI is writable
*/
static inline int msp_writable(spi_t *obj)
{
#if defined(SPI_IP_VERSION_V2)
return (int)LL_SPI_IsActiveFlag_TXP(SPI_INST(obj));
#else /* SPI_IP_VERSION_V2 */
return (int)LL_SPI_IsActiveFlag_TXE(SPI_INST(obj));
#endif /* SPI_IP_VERSION_V2 */
}
/**
* Check if SPI master interface is readable.
*
* @param obj
* @return 0 - SPI isn't readable, non-zero - SPI is readable
*/
static inline int msp_readable(spi_t *obj)
{
#if defined(SPI_IP_VERSION_V2)
return (int)LL_SPI_IsActiveFlag_RXP(SPI_INST(obj));
#else /* SPI_IP_VERSION_V2 */
return (int)LL_SPI_IsActiveFlag_RXNE(SPI_INST(obj));
#endif /* SPI_IP_VERSION_V2 */
}
/**
* Wait till SPI master interface is writable.
*/
static inline void msp_wait_writable(spi_t *obj)
{
while (!msp_writable(obj));
}
/**
* Wait till SPI master interface is readable.
*/
static inline void msp_wait_readable(spi_t *obj)
{
while (!msp_readable(obj));
}
/**
* Check if SPI master interface is busy.
*
* @param obj
* @return 0 - SPI isn't busy, non-zero - SPI is busy
*/
static inline int msp_busy(spi_t *obj)
{
#if defined(SPI_IP_VERSION_V2)
return !(int)LL_SPI_IsActiveFlag_TXC(SPI_INST(obj));
#else /* SPI_IP_VERSION_V2 */
return (int)LL_SPI_IsActiveFlag_BSY(SPI_INST(obj));
#endif /* SPI_IP_VERSION_V2 */
}
/**
* Wait till SPI master interface isn't busy.
*/
static inline void msp_wait_not_busy(spi_t *obj)
{
while (msp_busy(obj));
}
/**
* Write data to SPI master interface.
*/
static inline void msp_write_data(spi_t *obj, int value, int bitshift)
{
if (bitshift == 1) {
LL_SPI_TransmitData16(SPI_INST(obj), (uint16_t)value);
#ifdef HAS_32BIT_SPI_TRANSFERS
} else if (bitshift == 2) {
LL_SPI_TransmitData32(SPI_INST(obj), (uint32_t)value);
#endif /* HAS_32BIT_SPI_TRANSFERS */
} else {
LL_SPI_TransmitData8(SPI_INST(obj), (uint8_t)value);
}
}
/**
* Read data from SPI master interface.
*/
static inline int msp_read_data(spi_t *obj, int bitshift)
{
if (bitshift == 1) {
return LL_SPI_ReceiveData16(SPI_INST(obj));
#ifdef HAS_32BIT_SPI_TRANSFERS
} else if (bitshift == 2) {
return LL_SPI_ReceiveData32(SPI_INST(obj));
#endif /* HAS_32BIT_SPI_TRANSFERS */
} else {
return LL_SPI_ReceiveData8(SPI_INST(obj));
}
}
/**
* Transmit and receive SPI data in bidirectional mode.
*
* @param obj spi object
* @param tx_buffer byte-array of data to write to the device
* @param tx_length number of bytes to write, may be zero
* @param rx_buffer byte-array of data to read from the device
* @param rx_length number of bytes to read, may be zero
* @return number of transmitted and received bytes or negative code in case of error.
*/
static int spi_master_one_wire_transfer(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
MBED_ASSERT(bitshift >= 0);
const int word_size = 0x01 << bitshift;
/* Ensure that spi is disabled */
LL_SPI_Disable(SPI_INST(obj));
/* Transmit data */
if (tx_length) {
LL_SPI_SetTransferDirection(SPI_INST(obj), LL_SPI_HALF_DUPLEX_TX);
#if defined(SPI_IP_VERSION_V2)
/* Set transaction size */
LL_SPI_SetTransferSize(SPI_INST(obj), tx_length >> bitshift);
#endif /* SPI_IP_VERSION_V2 */
LL_SPI_Enable(SPI_INST(obj));
#if defined(SPI_IP_VERSION_V2)
/* Master transfer start */
LL_SPI_StartMasterTransfer(SPI_INST(obj));
#endif /* SPI_IP_VERSION_V2 */
for (int i = 0; i < tx_length; i += word_size) {
msp_wait_writable(obj);
msp_write_data(obj, spi_get_word_from_buffer(tx_buffer + i, bitshift), bitshift);
}
/* Wait end of transaction */
msp_wait_not_busy(obj);
LL_SPI_Disable(SPI_INST(obj));
#if defined(SPI_IP_VERSION_V2)
/* Clear transaction flags */
LL_SPI_ClearFlag_EOT(SPI_INST(obj));
LL_SPI_ClearFlag_TXTF(SPI_INST(obj));
/* Reset transaction size */
LL_SPI_SetTransferSize(SPI_INST(obj), 0);
#endif /* SPI_IP_VERSION_V2 */
}
/* Receive data */
if (rx_length) {
LL_SPI_SetTransferDirection(SPI_INST(obj), LL_SPI_HALF_DUPLEX_RX);
#if defined(SPI_IP_VERSION_V2)
/* Set transaction size and run SPI */
LL_SPI_SetTransferSize(SPI_INST(obj), rx_length >> bitshift);
LL_SPI_Enable(SPI_INST(obj));
LL_SPI_StartMasterTransfer(SPI_INST(obj));
/* Receive data */
for (int i = 0; i < rx_length; i += word_size) {
msp_wait_readable(obj);
spi_put_word_to_buffer(rx_buffer + i, bitshift, msp_read_data(obj, bitshift));
}
/* Stop SPI */
LL_SPI_Disable(SPI_INST(obj));
/* Clear transaction flags */
LL_SPI_ClearFlag_EOT(SPI_INST(obj));
LL_SPI_ClearFlag_TXTF(SPI_INST(obj));
/* Reset transaction size */
LL_SPI_SetTransferSize(SPI_INST(obj), 0);
#else /* SPI_IP_VERSION_V2 */
/* Unlike STM32H7 other STM32 families generates SPI Clock signal continuously in half-duplex receive mode
* till SPI is enabled. To stop clock generation a SPI should be disabled during last frame receiving,
* after generation at least one SPI clock cycle. It causes necessity of critical section usage.
* So the following consequences of steps is used to receive each byte:
* 1. Enter into critical section.
* 2. Enable SPI.
* 3. Wait one SPI clock cycle.
* 4. Disable SPI.
* 5. Wait full byte receiving.
* 6. Read byte.
* It gives some overhead, but gives stable byte reception without dummy reads and
* short delay of critical section holding.
*/
/* get estimation about one SPI clock cycle */
uint32_t baudrate_period_ns = 1000000000 / spi_get_baudrate(obj);
for (int i = 0; i < rx_length; i += word_size) {
core_util_critical_section_enter();
LL_SPI_Enable(SPI_INST(obj));
/* Wait single SPI clock cycle. */
wait_ns(baudrate_period_ns);
LL_SPI_Disable(SPI_INST(obj));
core_util_critical_section_exit();
msp_wait_readable(obj);
spi_put_word_to_buffer(rx_buffer + i, bitshift, msp_read_data(obj, bitshift));
}
#endif /* SPI_IP_VERSION_V2 */
}
return rx_length + tx_length;
}
int spi_master_write(spi_t *obj, int value)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
if (handle->Init.Direction == SPI_DIRECTION_1LINE) {
int result = spi_master_one_wire_transfer(obj, (const char *)&value, 1, NULL, 0);
return result == 1 ? HAL_OK : HAL_ERROR;
}
const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
MBED_ASSERT(bitshift >= 0);
#if defined(LL_SPI_RX_FIFO_TH_HALF)
/* Configure the default data size */
if (bitshift == 0) {
LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_QUARTER);
} else {
LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_HALF);
}
#endif
/* Here we're using LL which means direct registers access
* There is no error management, so we may end up looping
* infinitely here in case of faulty device for instance,
* but this will increase performances significantly
*/
#if defined(SPI_IP_VERSION_V2)
/* Master transfer start */
LL_SPI_StartMasterTransfer(SPI_INST(obj));
#endif /* SPI_IP_VERSION_V2 */
/* Transmit data */
msp_wait_writable(obj);
msp_write_data(obj, value, bitshift);
/* Receive data */
msp_wait_readable(obj);
return msp_read_data(obj, bitshift);
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
/* check buffer sizes are multiple of spi word size */
MBED_ASSERT(tx_length >> bitshift << bitshift == tx_length);
MBED_ASSERT(rx_length >> bitshift << bitshift == rx_length);
int total = (tx_length > rx_length) ? tx_length : rx_length;
if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
const int word_size = 0x01 << bitshift;
int write_fill_frame = write_fill;
/* extend fill symbols for 16/32 bit modes */
for (int i = 0; i < word_size; i++) {
write_fill_frame = (write_fill_frame << 8) | write_fill;
}
for (int i = 0; i < total; i += word_size) {
int out = (i < tx_length) ? spi_get_word_from_buffer(tx_buffer + i, bitshift) : write_fill_frame;
int in = spi_master_write(obj, out);
if (i < rx_length) {
spi_put_word_to_buffer(rx_buffer + i, bitshift, in);
}
}
} else {
/* 1 wire case */
int result = spi_master_one_wire_transfer(obj, tx_buffer, tx_length, rx_buffer, rx_length);
if (result != tx_length + rx_length) {
/* report an error */
total = 0;
}
}
return total;
}
int spi_slave_receive(spi_t *obj)
{
return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
};
int spi_slave_read(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
while (!ssp_readable(obj));
const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
MBED_ASSERT(bitshift >= 0);
if (bitshift == 1) {
return LL_SPI_ReceiveData16(SPI_INST(obj));
#ifdef HAS_32BIT_SPI_TRANSFERS
} else if (bitshift == 2) {
return LL_SPI_ReceiveData32(SPI_INST(obj));
#endif
} else {
return LL_SPI_ReceiveData8(SPI_INST(obj));
}
}
void spi_slave_write(spi_t *obj, int value)
{
SPI_TypeDef *spi = SPI_INST(obj);
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
while (!ssp_writeable(obj));
const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
MBED_ASSERT(bitshift >= 0);
if (bitshift == 1) {
LL_SPI_TransmitData16(spi, (uint16_t)value);
#ifdef HAS_32BIT_SPI_TRANSFERS
} else if (bitshift == 2) {
LL_SPI_TransmitData32(spi, (uint32_t)value);
#endif
} else {
LL_SPI_TransmitData8(spi, (uint8_t)value);
}
}
int spi_busy(spi_t *obj)
{
return ssp_busy(obj);
}
const PinMap *spi_master_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_master_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_master_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_master_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
const PinMap *spi_slave_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_slave_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_slave_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_slave_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
#if DEVICE_SPI_ASYNCH
typedef enum {
SPI_TRANSFER_TYPE_NONE = 0,
SPI_TRANSFER_TYPE_TX = 1,
SPI_TRANSFER_TYPE_RX = 2,
SPI_TRANSFER_TYPE_TXRX = 3,
} transfer_type_t;
/*
* Configure a DMA channel's transfer size to match the given SPI word size
*/
static void configure_dma_transfer_size(const uint32_t spiDataSize, DMA_HandleTypeDef * const dmaChannel)
{
#if DMA_IP_VERSION_V3
uint32_t * const transferSizePtr1 = &dmaChannel->Init.DestDataWidth;
uint32_t * const transferSizePtr2 = &dmaChannel->Init.SrcDataWidth;
uint32_t neededSizeVal1;
uint32_t neededSizeVal2;
if(spiDataSize <= SPI_DATASIZE_8BIT)
{
neededSizeVal1 = DMA_DEST_DATAWIDTH_BYTE;
neededSizeVal2 = DMA_SRC_DATAWIDTH_BYTE;
}
else if(spiDataSize <= SPI_DATASIZE_16BIT)
{
neededSizeVal1 = DMA_DEST_DATAWIDTH_HALFWORD;
neededSizeVal2 = DMA_SRC_DATAWIDTH_HALFWORD;
}
else
{
neededSizeVal1 = DMA_DEST_DATAWIDTH_WORD;
neededSizeVal2 = DMA_SRC_DATAWIDTH_WORD;
}
#else
uint32_t * const transferSizePtr1 = &dmaChannel->Init.PeriphDataAlignment;
uint32_t * const transferSizePtr2 = &dmaChannel->Init.MemDataAlignment;
uint32_t neededSizeVal1;
uint32_t neededSizeVal2;
if(spiDataSize <= SPI_DATASIZE_8BIT)
{
neededSizeVal1 = DMA_PDATAALIGN_BYTE;
neededSizeVal2 = DMA_MDATAALIGN_BYTE;
}
else if(spiDataSize <= SPI_DATASIZE_16BIT)
{
neededSizeVal1 = DMA_PDATAALIGN_HALFWORD;
neededSizeVal2 = DMA_MDATAALIGN_HALFWORD;
}
else
{
neededSizeVal1 = DMA_PDATAALIGN_WORD;
neededSizeVal2 = DMA_MDATAALIGN_WORD;
}
#endif
// Check values and reinit DMA if needed
if(*transferSizePtr1 != neededSizeVal1 || *transferSizePtr2 != neededSizeVal2)
{
*transferSizePtr1 = neededSizeVal1;
*transferSizePtr2 = neededSizeVal2;
HAL_DMA_Init(dmaChannel);
}
}
/// @returns True if DMA was used, false otherwise
static bool spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length, DMAUsage hint)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
// bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
MBED_ASSERT(bitshift >= 0);
// the HAL expects number of transfers instead of number of bytes
// so the number of transfers depends on the container size
size_t words;
obj->spi.transfer_type = transfer_type;
words = length >> bitshift;
bool useDMA = false;
#if STM32_SPI_CAPABILITY_DMA
if (hint != DMA_USAGE_NEVER)
{
// Initialize DMA channel(s) needed
switch (transfer_type)
{
case SPI_TRANSFER_TYPE_TXRX:
spi_init_rx_dma(&obj->spi);
spi_init_tx_dma(&obj->spi);
break;
case SPI_TRANSFER_TYPE_TX:
spi_init_tx_dma(&obj->spi);
break;
case SPI_TRANSFER_TYPE_RX:
spi_init_rx_dma(&obj->spi);
if(handle->Init.Direction == SPI_DIRECTION_2LINES) {
// For 2 line SPI, doing an Rx-only transfer still requires a second DMA channel to send the fill
// bytes.
spi_init_tx_dma(&obj->spi);
}
break;
default:
break;
}
useDMA = true;
// Make sure that the DMA word size matches the SPI word size. Also check address alignment.
if(transfer_type == SPI_TRANSFER_TYPE_TXRX || transfer_type == SPI_TRANSFER_TYPE_TX)
{
MBED_ASSERT(((ptrdiff_t)tx) % (1 << bitshift) == 0); // <-- if you hit this assert you passed an unaligned pointer to an SPI async transfer
configure_dma_transfer_size(handle->Init.DataSize, handle->hdmatx);
}
if(transfer_type == SPI_TRANSFER_TYPE_TXRX || transfer_type == SPI_TRANSFER_TYPE_RX)
{
MBED_ASSERT(((ptrdiff_t)rx) % (1 << bitshift) == 0); // <-- if you hit this assert you passed an unaligned pointer to an SPI async transfer
configure_dma_transfer_size(handle->Init.DataSize, handle->hdmarx);
}
}
obj->spi.curr_transfer_uses_dma = useDMA;
#endif
DEBUG_PRINTF("SPI inst=0x%8X Start: type=%u, length=%u, DMA=%d\r\n", (int) handle->Instance, transfer_type, length, !!useDMA);
// Enable the interrupt. This might be needed even for DMA -- some HAL implementations (e.g. H7) have
// the DMA interrupt handler trigger the SPI interrupt.
IRQn_Type irq_n = spiobj->spiIRQ;
NVIC_ClearPendingIRQ(irq_n);
NVIC_SetPriority(irq_n, 1);
NVIC_EnableIRQ(irq_n);
// flush FIFO
#if defined(SPI_FLAG_FRLVL)
HAL_SPIEx_FlushRxFifo(handle);
#endif
// enable the right hal transfer
int rc = 0;
#if defined(SPI_IP_VERSION_V2)
// HAL SPI API assumes that SPI disabled between transfers and
// doesn't work properly if SPI is enabled.
LL_SPI_Disable(SPI_INST(obj));
#endif
switch (transfer_type) {
case SPI_TRANSFER_TYPE_TXRX:
if(useDMA) {
rc = HAL_SPI_TransmitReceive_DMA(handle, (uint8_t *)tx, (uint8_t *)rx, words);
}
else {
rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t *) tx, (uint8_t *) rx, words);
}
break;
case SPI_TRANSFER_TYPE_TX:
if (useDMA) {
rc = HAL_SPI_Transmit_DMA(handle, (uint8_t *)tx, words);
}
else {
rc = HAL_SPI_Transmit_IT(handle, (uint8_t *) tx, words);
}
break;
case SPI_TRANSFER_TYPE_RX:
// the receive function also "transmits" the receive buffer so in order
// to guarantee that 0xff is on the line, we explicitly memset it here
memset(rx, SPI_FILL_CHAR, length);
if (useDMA) {
#if defined(STM32_SPI_CAPABILITY_DMA) && defined(__DCACHE_PRESENT)
// For chips with a cache (e.g. Cortex-M7), we need to evict the Tx fill data from cache to main memory.
// This ensures that the DMA controller can see the most up-to-date copy of the data.
SCB_CleanDCache_by_Addr(rx, length);
#endif
rc = HAL_SPI_Receive_DMA(handle, (uint8_t *)rx, words);
}
else {
rc = HAL_SPI_Receive_IT(handle, (uint8_t *)rx, words);
}
break;
default:
length = 0;
}
if (rc) {
#if defined(SPI_IP_VERSION_V2)
// enable SPI back in case of error
if (handle->Init.Direction != SPI_DIRECTION_1LINE) {
LL_SPI_Enable(SPI_INST(obj));
}
#endif
// Unfortunately there is no way to propagate the error code back up, better to print a warning than swallow it entirely
printf("Warning: async SPI transfer start failed in STM32 HAL, error code = %d", rc);
}
return useDMA;
}
// asynchronous API
bool spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
// check which use-case we have
bool use_tx = (tx != NULL && tx_length > 0);
bool use_rx = (rx != NULL && rx_length > 0);
const int bitshift = datasize_to_transfer_bitshift(handle->Init.DataSize);
MBED_ASSERT(bitshift >= 0);
// don't do anything, if the buffers aren't valid
if (!use_tx && !use_rx) {
return false;
}
// copy the buffers to the SPI object
obj->tx_buff.buffer = (void *) tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
obj->tx_buff.width = 8 << bitshift;
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
obj->rx_buff.width = obj->tx_buff.width;
obj->spi.event = event;
// Register the callback.
// It's a function pointer, but it's passed as a uint32_t because of reasons.
spiobj->driverCallback = (void (*)(void))handler;
DEBUG_PRINTF("SPI: Transfer: tx %u (%u), rx %u (%u)\n", use_tx, tx_length, use_rx, rx_length);
// enable the right hal transfer
if (use_tx && use_rx) {
// we cannot manage different rx / tx sizes, let's use smaller one
size_t size = (tx_length < rx_length) ? tx_length : rx_length;
if (tx_length != rx_length) {
DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size);
obj->tx_buff.length = size;
obj->rx_buff.length = size;
}
return spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size, hint);
} else if (use_tx) {
return spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length, hint);
} else if (use_rx) {
return spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length, hint);
}
else {
return false;
}
}
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
int event = 0;
SPI_HandleTypeDef *handle = &(SPI_S(obj)->handle);
if (handle->State == HAL_SPI_STATE_READY) {
// When HAL SPI is back to READY state, check if there was an error
int error = obj->spi.handle.ErrorCode;
if (error != HAL_SPI_ERROR_NONE) {
// something went wrong and the transfer has definitely completed
event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
if (error & HAL_SPI_ERROR_OVR) {
// buffer overrun
event |= SPI_EVENT_RX_OVERFLOW;
}
} else {
// else we're done
event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
}
// disable the interrupt
NVIC_DisableIRQ(obj->spi.spiIRQ);
NVIC_ClearPendingIRQ(obj->spi.spiIRQ);
#if !defined(SPI_IP_VERSION_V2)
if (handle->Init.Direction == SPI_DIRECTION_1LINE && obj->rx_buff.buffer != NULL) {
/**
* In case of 3-wire SPI data receiving we usually get dummy reads.
* So we need to cleanup FIFO/input register before next transmission.
* Probably it's better to set SPI_EVENT_RX_OVERFLOW event flag,
* but let's left it as is for backward compatibility.
*/
spi_flush_rx(obj);
}
#else
// reset transfer size
LL_SPI_SetTransferSize(SPI_INST(obj), 0);
// HAL_SPI_TransmitReceive_IT/HAL_SPI_Transmit_IT/HAL_SPI_Receive_IT
// function disable SPI after transfer. So we need enabled it back,
// otherwise spi_master_block_write/spi_master_write won't work in 4-wire mode.
if (handle->Init.Direction != SPI_DIRECTION_1LINE) {
LL_SPI_Enable(SPI_INST(obj));
}
#endif /* SPI_IP_VERSION_V2 */
}
return (event & (obj->spi.event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE));
}
// Callback from STM32 HAL when a bidirectional SPI transfer completes (interrupt based or DMA)
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
struct spi_s * spis = get_spis_pointer(hspi);
if(spis != NULL)
{
spis->driverCallback();
}
}
// Callback from STM32 HAL when a Rx-only SPI transfer completes (interrupt based or DMA)
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
struct spi_s * spis = get_spis_pointer(hspi);
if(spis != NULL)
{
spis->driverCallback();
}
}
// Callback from STM32 HAL when a Tx-only SPI transfer completes (interrupt based or DMA)
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
struct spi_s * spis = get_spis_pointer(hspi);
if(spis != NULL)
{
spis->driverCallback();
}
}
uint8_t spi_active(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle);
switch (state) {
case HAL_SPI_STATE_RESET:
case HAL_SPI_STATE_READY:
case HAL_SPI_STATE_ERROR:
return 0;
default:
return 1;
}
}
void spi_abort_asynch(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
SPI_HandleTypeDef *handle = &(spiobj->handle);
// disable interrupt if it was enabled
IRQn_Type irq_n = spiobj->spiIRQ;
NVIC_ClearPendingIRQ(irq_n);
NVIC_DisableIRQ(irq_n);
// Use HAL abort function.
// Conveniently, this is smart enough to automatically abort the DMA transfer
// if DMA was used.
HAL_StatusTypeDef rc = HAL_SPI_Abort_IT(handle);
if(rc != HAL_OK)
{
printf("Warning: async SPI abort failed in STM32 HAL, error code = %d\n", rc);
}
if((handle->hdmatx != NULL && handle->hdmatx->State != HAL_DMA_STATE_READY) || (handle->hdmarx != NULL && handle->hdmarx->State != HAL_DMA_STATE_READY))
{
printf("Warning: DMA did not return to ready state after abort!\n");
return;
}
}
#endif //DEVICE_SPI_ASYNCH
#endif