mbed-os/targets/TARGET_TI/TARGET_CC32XX/TARGET_CC3220SF/serial_api.c

438 lines
12 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "mbed_assert.h"
#include "serial_api.h"
#include "serial_object.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "gpio_api.h"
#include "PeripheralPins.h"
#include <ti/devices/cc32xx/inc/hw_memmap.h>
#include <ti/devices/cc32xx/inc/hw_ocp_shared.h>
#include <ti/devices/cc32xx/inc/hw_ints.h>
#include <ti/devices/cc32xx/inc/hw_types.h>
#include <ti/devices/cc32xx/inc/hw_uart.h>
#include <ti/devices/cc32xx/inc/hw_common_reg.h>
#include <ti/devices/cc32xx/driverlib/rom.h>
#include <ti/devices/cc32xx/driverlib/rom_map.h>
#include <ti/devices/cc32xx/driverlib/uart.h>
#include <ti/devices/cc32xx/driverlib/pin.h>
#include <ti/devices/cc32xx/driverlib/prcm.h>
#include <ti/devices/cc32xx/driverlib/interrupt.h>
#include <ti/devices/cc32xx/driverlib/utils.h>
/******************************************************************************
* INITIALIZATION
******************************************************************************/
#define UART_NUM 2
static const uint32_t dataLength[] = {
UART_CONFIG_WLEN_5, /* UART_LEN_5 */
UART_CONFIG_WLEN_6, /* UART_LEN_6 */
UART_CONFIG_WLEN_7, /* UART_LEN_7 */
UART_CONFIG_WLEN_8 /* UART_LEN_8 */
};
static const uint32_t stopBits[] = {
UART_CONFIG_STOP_ONE, /* UART_STOP_ONE */
UART_CONFIG_STOP_TWO /* UART_STOP_TWO */
};
static const uint32_t parityType[] = {
UART_CONFIG_PAR_NONE, /* UART_PAR_NONE */
UART_CONFIG_PAR_EVEN, /* UART_PAR_EVEN */
UART_CONFIG_PAR_ODD, /* UART_PAR_ODD */
UART_CONFIG_PAR_ZERO, /* UART_PAR_ZERO */
UART_CONFIG_PAR_ONE /* UART_PAR_ONE */
};
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
struct serial_global_data_s {
uint32_t serial_irq_id;
gpio_t sw_rts, sw_cts;
uint8_t count, rx_irq_set_flow, rx_irq_set_api;
};
static struct serial_global_data_s uart_data[UART_NUM];
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
int is_stdio_uart = 0;
// determine the UART to use
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT((int)uart != NC);
obj->uart = (CC3220SF_UART_TypeDef *)uart;
// Set default values for UART
obj->dataLength = UART_LEN_8;
obj->stopBits = UART_STOP_ONE;
obj->parityType = UART_PAR_NONE;
switch (uart) {
case UART_0: {
obj->index = 0;
obj->baseAddr = CC3220SF_UARTA0_BASE;
obj->powerMgrId = 12; /*!< Resource ID: UART 0 */
obj->intNum = INT_UARTA0_IRQn;
obj->peripheralId = PRCM_UARTA0;
}
break;
case UART_1: {
obj->index = 1;
obj->baseAddr = CC3220SF_UARTA1_BASE;
obj->powerMgrId = 13; /*!< Resource ID: UART 1 */
obj->intNum = INT_UARTA1_IRQn;
obj->peripheralId = PRCM_UARTA1;
}
break;
}
PRCMPeripheralClkEnable(obj->peripheralId, PRCM_RUN_MODE_CLK);
// Pinout the chosen uart
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
MAP_PinTypeUART(tx, pinmap_function(tx, PinMap_UART_TX));
MAP_PinTypeUART(rx, pinmap_function(rx, PinMap_UART_RX));
MAP_UARTEnable(obj->baseAddr);
// Set default baud rate and format
serial_baud(obj, 9600);
serial_format(obj, 8, ParityNone, 1);
// set rx/tx pins in PullUp mode
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
/* Set flow control */
uart_data[obj->index].sw_rts.pin = NC;
uart_data[obj->index].sw_cts.pin = NC;
serial_set_flow_control(obj, FlowControlNone, NC, NC);
is_stdio_uart = (uart == STDIO_UART) ? (1) : (0);
if (is_stdio_uart) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj)
{
uart_data[obj->index].serial_irq_id = 0;
}
void serial_baud(serial_t *obj, int baudrate)
{
obj->baudRate = baudrate;
MAP_UARTConfigSetExpClk(obj->baseAddr, MAP_PRCMPeripheralClockGet(obj->peripheralId),
obj->baudRate, (dataLength[obj->dataLength] |
stopBits[obj->stopBits] | parityType[obj->parityType]));
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // 0: 1 stop bits, 1: 2 stop bits
MBED_ASSERT((data_bits > 4) && (data_bits < 9)); // 0: 5 data bits ... 3: 8 data bits
MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) ||
(parity == ParityForced1) || (parity == ParityForced0));
stop_bits -= 1;
data_bits -= 5;
switch (parity) {
case ParityNone:
obj->parityType = UART_PAR_NONE;
break;
case ParityOdd :
obj->parityType = UART_PAR_ODD;
break;
case ParityEven:
obj->parityType = UART_PAR_EVEN;
break;
case ParityForced1:
obj->parityType = UART_PAR_ONE;
break;
case ParityForced0:
obj->parityType = UART_PAR_ZERO;
break;
default:
obj->parityType = UART_PAR_NONE;
break;
}
switch (data_bits) {
case 0:
obj->dataLength = UART_LEN_5;
break;
case 1:
obj->dataLength = UART_LEN_6;
break;
case 2:
obj->dataLength = UART_LEN_7;
break;
case 3:
obj->dataLength = UART_LEN_8;
break;
default:
obj->dataLength = UART_LEN_8;
break;
}
switch (stop_bits) {
case 0:
obj->stopBits = UART_STOP_ONE;
break;
case 1:
obj->stopBits = UART_STOP_TWO;
break;
default:
obj->stopBits = UART_STOP_ONE;
break;
}
MAP_UARTConfigSetExpClk(obj->baseAddr, MAP_PRCMPeripheralClockGet(obj->peripheralId),
obj->baudRate, (dataLength[obj->dataLength] |
stopBits[obj->stopBits] | parityType[obj->parityType]));
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint32_t intstatus, uint32_t index, CC3220SF_UART_TypeDef *puart)
{
SerialIrq irq_type;
if (intstatus & UART_INT_TX) {
irq_type = TxIrq;
} else {
irq_type = RxIrq;
}
uint32_t rxErrors = puart->RSR & 0x0000000F;
if (rxErrors) {
puart->ECR = 0;
}
if ((RxIrq == irq_type) && (NC != uart_data[index].sw_rts.pin)) {
gpio_write(&uart_data[index].sw_rts, 1);
// Disable interrupt if it wasn't enabled by other part of the application
if (!uart_data[index].rx_irq_set_api) {
puart->IM &= ~(UART_INT_RX | UART_INT_RT);
}
}
if (uart_data[index].serial_irq_id != 0) {
if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api)) {
irq_handler(uart_data[index].serial_irq_id, irq_type);
}
}
if (irq_type == TxIrq) {
puart->ICR = UART_INT_TX; // clear TX interrupt
} else {
puart->ICR = UART_INT_RX; // clear RX interrupt
}
}
void uart0_irq()
{
uart_irq(CC3220SF_UART0->MIS, 0, (CC3220SF_UART_TypeDef *)CC3220SF_UART0);
}
void uart1_irq()
{
uart_irq(CC3220SF_UART1->MIS, 1, (CC3220SF_UART_TypeDef *)CC3220SF_UART1);
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
uart_data[obj->index].serial_irq_id = id;
}
void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable)
{
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
/* Clear interrupts */
uint32_t status = MAP_UARTIntStatus(obj->baseAddr, true);
MAP_UARTIntClear(obj->baseAddr, status);
switch ((int)obj->uart) {
case UART_0:
irq_n = INT_UARTA0_IRQn;
vector = (uint32_t)&uart0_irq;
break;
case UART_1:
irq_n = INT_UARTA1_IRQn;
vector = (uint32_t)&uart1_irq;
break;
}
if (enable) {
if (irq == TxIrq) {
MAP_UARTIntEnable(obj->baseAddr, UART_INT_TX);
} else {
MAP_UARTIntEnable(obj->baseAddr, UART_INT_RX);
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else {
/* Disable IRQ */
MAP_UARTIntDisable(obj->baseAddr, UART_INT_TX | UART_INT_RX);
NVIC_DisableIRQ(irq_n);
}
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (RxIrq == irq) {
uart_data[obj->index].rx_irq_set_api = enable;
}
serial_irq_set_internal(obj, irq, enable);
}
/*static void serial_flow_irq_set(serial_t *obj, uint32_t enable)
{
uart_data[obj->index].rx_irq_set_flow = enable;
serial_irq_set_internal(obj, RxIrq, enable);
}*/
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj)
{
while (!serial_readable(obj));
return obj->uart->DR;
}
void serial_putc(serial_t *obj, int c)
{
while (!serial_writable(obj));
obj->uart->DR = c;
}
int serial_readable(serial_t *obj)
{
return ((obj->uart->FR & UART_FR_RXFE) ? 0 : 1);
}
int serial_writable(serial_t *obj)
{
return ((obj->uart->FR & UART_FR_TXFF) ? 0 : 1);
}
void serial_clear(serial_t *obj)
{
obj->uart->DR = 0x00;
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj)
{
MAP_UARTBreakCtl(obj->baseAddr, true);
}
void serial_break_clear(serial_t *obj)
{
MAP_UARTBreakCtl(obj->baseAddr, false);
}
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
switch (type) {
case FlowControlRTS:
pinmap_pinout(rxflow, PinMap_UART_RTS);
MAP_UARTFlowControlSet(obj->baseAddr, UART_FLOWCONTROL_RX);
MAP_UARTModemControlSet(obj->baseAddr, UART_OUTPUT_RTS);
break;
case FlowControlCTS:
pinmap_pinout(txflow, PinMap_UART_CTS);
MAP_UARTFlowControlSet(obj->baseAddr, UART_FLOWCONTROL_TX);
MAP_UARTModemControlClear(obj->baseAddr, UART_OUTPUT_RTS);
break;
case FlowControlRTSCTS:
pinmap_pinout(rxflow, PinMap_UART_RTS);
pinmap_pinout(txflow, PinMap_UART_CTS);
MAP_UARTFlowControlSet(obj->baseAddr, UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX);
MAP_UARTModemControlSet(obj->baseAddr, UART_OUTPUT_RTS);
break;
case FlowControlNone:
MAP_UARTFlowControlSet(obj->baseAddr, UART_FLOWCONTROL_NONE);
MAP_UARTModemControlClear(obj->baseAddr, UART_OUTPUT_RTS);
break;
}
}
const PinMap *serial_tx_pinmap()
{
return PinMap_UART_TX;
}
const PinMap *serial_rx_pinmap()
{
return PinMap_UART_RX;
}
const PinMap *serial_cts_pinmap()
{
#if !DEVICE_SERIAL_FC
static const PinMap PinMap_UART_CTS[] = {
{NC, NC, 0}
};
#endif
return PinMap_UART_CTS;
}
const PinMap *serial_rts_pinmap()
{
#if !DEVICE_SERIAL_FC
static const PinMap PinMap_UART_RTS[] = {
{NC, NC, 0}
};
#endif
return PinMap_UART_RTS;
}