mirror of https://github.com/ARMmbed/mbed-os.git
425 lines
13 KiB
C
425 lines
13 KiB
C
/*******************************************************************************
|
|
* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Except as contained in this notice, the name of Maxim Integrated
|
|
* Products, Inc. shall not be used except as stated in the Maxim Integrated
|
|
* Products, Inc. Branding Policy.
|
|
*
|
|
* The mere transfer of this software does not imply any licenses
|
|
* of trade secrets, proprietary technology, copyrights, patents,
|
|
* trademarks, maskwork rights, or any other form of intellectual
|
|
* property whatsoever. Maxim Integrated Products, Inc. retains all
|
|
* ownership rights.
|
|
*******************************************************************************
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include "mbed_assert.h"
|
|
#include "cmsis.h"
|
|
#include "serial_api.h"
|
|
#include "gpio_api.h"
|
|
#include "uart_regs.h"
|
|
#include "ioman_regs.h"
|
|
#include "PeripheralPins.h"
|
|
|
|
#define UART_NUM 2
|
|
#define DEFAULT_BAUD 9600
|
|
#define DEFAULT_STOP 1
|
|
#define DEFAULT_PARITY ParityNone
|
|
|
|
#define UART_ERRORS (MXC_F_UART_INTFL_RX_FRAME_ERROR | \
|
|
MXC_F_UART_INTFL_RX_PARITY_ERROR | \
|
|
MXC_F_UART_INTFL_RX_OVERRUN)
|
|
|
|
// Variables for managing the stdio UART
|
|
int stdio_uart_inited;
|
|
serial_t stdio_uart;
|
|
|
|
// Variables for interrupt driven
|
|
static uart_irq_handler irq_handler;
|
|
static uint32_t serial_irq_ids[UART_NUM];
|
|
|
|
//******************************************************************************
|
|
void serial_init(serial_t *obj, PinName tx, PinName rx)
|
|
{
|
|
// Determine which uart is associated with each pin
|
|
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
|
|
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
|
|
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
|
|
|
|
// Make sure that both pins are pointing to the same uart
|
|
MBED_ASSERT(uart != (UARTName)NC);
|
|
|
|
// Set the obj pointer to the proper uart
|
|
obj->uart = (mxc_uart_regs_t*)uart;
|
|
|
|
// Set the uart index
|
|
obj->index = MXC_UART_BASE_TO_INSTANCE(obj->uart);
|
|
|
|
// Configure the pins
|
|
pinmap_pinout(tx, PinMap_UART_TX);
|
|
pinmap_pinout(rx, PinMap_UART_RX);
|
|
|
|
// Flush the RX and TX FIFOs, clear the settings
|
|
obj->uart->ctrl = ( MXC_F_UART_CTRL_TX_FIFO_FLUSH | MXC_F_UART_CTRL_RX_FIFO_FLUSH);
|
|
|
|
// Disable interrupts
|
|
obj->uart->inten = 0;
|
|
obj->uart->intfl = 0;
|
|
|
|
// Configure to default settings
|
|
serial_baud(obj, DEFAULT_BAUD);
|
|
serial_format(obj, 8, ParityNone, 1);
|
|
|
|
// Manage stdio UART
|
|
if(uart == STDIO_UART) {
|
|
stdio_uart_inited = 1;
|
|
memcpy(&stdio_uart, obj, sizeof(serial_t));
|
|
}
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_free(serial_t *obj)
|
|
{
|
|
serial_irq_ids[obj->index];
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_baud(serial_t *obj, int baudrate)
|
|
{
|
|
uint32_t idiv = 0, ddiv = 0, div = 0;
|
|
|
|
// Calculate the integer and decimal portions
|
|
div = SystemCoreClock / ((baudrate / 100) * 128);
|
|
idiv = (div / 100);
|
|
ddiv = (div - idiv * 100) * 128 / 100;
|
|
|
|
obj->uart->baud_int = idiv;
|
|
obj->uart->baud_div_128 = ddiv;
|
|
|
|
// Enable the baud clock
|
|
obj->uart->ctrl |= MXC_F_UART_CTRL_BAUD_CLK_EN;
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
|
|
{
|
|
|
|
// Check the validity of the inputs
|
|
MBED_ASSERT((data_bits > 4) && (data_bits < 9));
|
|
MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) ||
|
|
(parity == ParityEven) || (parity == ParityForced1) ||
|
|
(parity == ParityForced0));
|
|
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2));
|
|
|
|
// Adjust the stop and data bits
|
|
stop_bits -= 1;
|
|
data_bits -= 5;
|
|
|
|
// Adjust the parity setting
|
|
int paren = 0, mode = 0;
|
|
switch (parity) {
|
|
case ParityNone:
|
|
paren = 0;
|
|
mode = 0;
|
|
break;
|
|
case ParityOdd :
|
|
paren = 1;
|
|
mode = 0;
|
|
break;
|
|
case ParityEven:
|
|
paren = 1;
|
|
mode = 1;
|
|
break;
|
|
case ParityForced1:
|
|
// Hardware does not support forced parity
|
|
MBED_ASSERT(0);
|
|
break;
|
|
case ParityForced0:
|
|
// Hardware does not support forced parity
|
|
MBED_ASSERT(0);
|
|
break;
|
|
default:
|
|
paren = 1;
|
|
mode = 0;
|
|
break;
|
|
}
|
|
|
|
obj->uart->ctrl |= ((data_bits << MXC_F_UART_CTRL_CHAR_LENGTH_POS) |
|
|
(stop_bits << MXC_F_UART_CTRL_STOP_BIT_MODE_POS) |
|
|
(paren << MXC_F_UART_CTRL_PARITY_ENABLE_POS) |
|
|
(mode << MXC_F_UART_CTRL_PARITY_MODE_POS));
|
|
}
|
|
|
|
//******************************************************************************
|
|
void uart_handler(mxc_uart_regs_t* uart, int id)
|
|
{
|
|
// Check for errors or RX Threshold
|
|
if(uart->intfl & (MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS)) {
|
|
irq_handler(serial_irq_ids[id], RxIrq);
|
|
uart->intfl &= ~(MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS);
|
|
}
|
|
|
|
// Check for TX Threshold
|
|
if(uart->intfl & MXC_F_UART_INTFL_TX_ALMOST_EMPTY) {
|
|
irq_handler(serial_irq_ids[id], TxIrq);
|
|
uart->intfl &= ~(MXC_F_UART_INTFL_TX_ALMOST_EMPTY);
|
|
}
|
|
}
|
|
|
|
void uart0_handler(void)
|
|
{
|
|
uart_handler(MXC_UART0, 0);
|
|
}
|
|
void uart1_handler(void)
|
|
{
|
|
uart_handler(MXC_UART1, 1);
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
|
|
{
|
|
irq_handler = handler;
|
|
serial_irq_ids[obj->index] = id;
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
|
|
{
|
|
if(obj->index == 0) {
|
|
NVIC_SetVector(UART0_IRQn, (uint32_t)uart0_handler);
|
|
NVIC_EnableIRQ(UART0_IRQn);
|
|
} else {
|
|
NVIC_SetVector(UART1_IRQn, (uint32_t)uart1_handler);
|
|
NVIC_EnableIRQ(UART1_IRQn);
|
|
}
|
|
|
|
if(irq == RxIrq) {
|
|
// Set the RX FIFO Threshold to 1
|
|
obj->uart->ctrl &= ~MXC_F_UART_CTRL_RX_THRESHOLD;
|
|
obj->uart->ctrl |= 0x1;
|
|
// Enable RX FIFO Threshold Interrupt
|
|
if(enable) {
|
|
// Clear pending interrupts
|
|
obj->uart->intfl = 0;
|
|
obj->uart->inten |= (MXC_F_UART_INTFL_RX_OVER_THRESHOLD |
|
|
UART_ERRORS);
|
|
} else {
|
|
// Clear pending interrupts
|
|
obj->uart->intfl = 0;
|
|
obj->uart->inten &= ~(MXC_F_UART_INTFL_RX_OVER_THRESHOLD |
|
|
UART_ERRORS);
|
|
}
|
|
|
|
} else if (irq == TxIrq) {
|
|
// Enable TX Almost empty Interrupt
|
|
if(enable) {
|
|
// Clear pending interrupts
|
|
obj->uart->intfl = 0;
|
|
obj->uart->inten |= MXC_F_UART_INTFL_TX_ALMOST_EMPTY;
|
|
} else {
|
|
// Clear pending interrupts
|
|
obj->uart->intfl = 0;
|
|
obj->uart->inten &= ~MXC_F_UART_INTFL_TX_ALMOST_EMPTY;
|
|
}
|
|
|
|
} else {
|
|
MBED_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
|
|
//******************************************************************************
|
|
int serial_getc(serial_t *obj)
|
|
{
|
|
int c;
|
|
|
|
// Wait for data to be available
|
|
while(obj->uart->status & MXC_F_UART_STATUS_RX_FIFO_EMPTY) {}
|
|
c = obj->uart->tx_rx_fifo & 0xFF;
|
|
|
|
return c;
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_putc(serial_t *obj, int c)
|
|
{
|
|
// Wait for TXFIFO to not be full
|
|
while(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL) {}
|
|
obj->uart->tx_rx_fifo = c;
|
|
}
|
|
|
|
//******************************************************************************
|
|
int serial_readable(serial_t *obj)
|
|
{
|
|
return (!(obj->uart->status & MXC_F_UART_STATUS_RX_FIFO_EMPTY));
|
|
}
|
|
|
|
//******************************************************************************
|
|
int serial_writable(serial_t *obj)
|
|
{
|
|
return (!(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL));
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_clear(serial_t *obj)
|
|
{
|
|
// Clear the rx and tx fifos
|
|
obj->uart->ctrl |= (MXC_F_UART_CTRL_TX_FIFO_FLUSH | MXC_F_UART_CTRL_RX_FIFO_FLUSH );
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_break_set(serial_t *obj)
|
|
{
|
|
// Make sure that nothing is being sent
|
|
while (!(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_EMPTY));
|
|
while (obj->uart->status & MXC_F_UART_STATUS_TX_BUSY);
|
|
|
|
// Configure the GPIO to outpu 0
|
|
gpio_t tx_gpio;
|
|
switch (((UARTName)(obj->uart))) {
|
|
case UART_0:
|
|
gpio_init_out(&tx_gpio, UART0_TX);
|
|
break;
|
|
case UART_1:
|
|
gpio_init_out(&tx_gpio, UART1_TX);
|
|
break;
|
|
default:
|
|
gpio_init_out(&tx_gpio, (PinName)NC);
|
|
break;
|
|
}
|
|
|
|
gpio_write(&tx_gpio, 0);
|
|
|
|
// GPIO is setup now, but we need to maps gpio to the pin
|
|
switch (((UARTName)(obj->uart))) {
|
|
case UART_0:
|
|
MXC_IOMAN->uart0_req &= ~MXC_F_IOMAN_UART_CORE_IO;
|
|
MBED_ASSERT((MXC_IOMAN->uart0_ack & (MXC_F_IOMAN_UART_CORE_IO | MXC_F_IOMAN_UART_CORE_IO)) == 0);
|
|
break;
|
|
case UART_1:
|
|
MXC_IOMAN->uart1_req &= ~MXC_F_IOMAN_UART_CORE_IO;
|
|
MBED_ASSERT((MXC_IOMAN->uart1_ack & (MXC_F_IOMAN_UART_CORE_IO | MXC_F_IOMAN_UART_CORE_IO)) == 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_break_clear(serial_t *obj)
|
|
{
|
|
// Configure the GPIO to output 1
|
|
gpio_t tx_gpio;
|
|
switch (((UARTName)(obj->uart))) {
|
|
case UART_0:
|
|
gpio_init_out(&tx_gpio, UART0_TX);
|
|
break;
|
|
case UART_1:
|
|
gpio_init_out(&tx_gpio, UART1_TX);
|
|
break;
|
|
default:
|
|
gpio_init_out(&tx_gpio, (PinName)NC);
|
|
break;
|
|
}
|
|
|
|
gpio_write(&tx_gpio, 1);
|
|
|
|
// Renable UART
|
|
switch (((UARTName)(obj->uart))) {
|
|
case UART_0:
|
|
serial_pinout_tx(UART0_TX);
|
|
break;
|
|
case UART_1:
|
|
serial_pinout_tx(UART1_TX);
|
|
break;
|
|
default:
|
|
serial_pinout_tx((PinName)NC);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//******************************************************************************
|
|
void serial_pinout_tx(PinName tx)
|
|
{
|
|
pinmap_pinout(tx, PinMap_UART_TX);
|
|
}
|
|
|
|
|
|
//******************************************************************************
|
|
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
|
|
{
|
|
if(FlowControlNone == type) {
|
|
// Disable hardware flow control
|
|
obj->uart->ctrl &= ~(MXC_F_UART_CTRL_HW_FLOW_CTRL_EN);
|
|
return;
|
|
}
|
|
|
|
// Check to see if we can use HW flow control
|
|
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
|
|
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
|
|
UARTName uart = (UARTName)pinmap_merge(uart_cts, uart_rts);
|
|
|
|
if((FlowControlCTS == type) || (FlowControlRTSCTS== type)) {
|
|
// Make sure pin is in the PinMap
|
|
MBED_ASSERT(uart_cts != (UARTName)NC);
|
|
|
|
// Enable the pin for CTS function
|
|
pinmap_pinout(txflow, PinMap_UART_CTS);
|
|
}
|
|
|
|
if((FlowControlRTS == type) || (FlowControlRTSCTS== type)) {
|
|
// Make sure pin is in the PinMap
|
|
MBED_ASSERT(uart_rts != (UARTName)NC);
|
|
|
|
// Enable the pin for RTS function
|
|
pinmap_pinout(rxflow, PinMap_UART_RTS);
|
|
}
|
|
|
|
if(FlowControlRTSCTS == type){
|
|
// Make sure that the pins are pointing to the same UART
|
|
MBED_ASSERT(uart != (UARTName)NC);
|
|
}
|
|
|
|
// Enable hardware flow control
|
|
obj->uart->ctrl |= MXC_F_UART_CTRL_HW_FLOW_CTRL_EN;
|
|
}
|
|
|
|
const PinMap *serial_tx_pinmap()
|
|
{
|
|
return PinMap_UART_TX;
|
|
}
|
|
|
|
const PinMap *serial_rx_pinmap()
|
|
{
|
|
return PinMap_UART_RX;
|
|
}
|
|
|
|
const PinMap *serial_cts_pinmap()
|
|
{
|
|
return PinMap_UART_CTS;
|
|
}
|
|
|
|
const PinMap *serial_rts_pinmap()
|
|
{
|
|
return PinMap_UART_RTS;
|
|
}
|