mbed-os/targets/TARGET_Maxim/TARGET_MAX32600/serial_api.c

425 lines
13 KiB
C

/*******************************************************************************
* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include <string.h>
#include "mbed_assert.h"
#include "cmsis.h"
#include "serial_api.h"
#include "gpio_api.h"
#include "uart_regs.h"
#include "ioman_regs.h"
#include "PeripheralPins.h"
#define UART_NUM 2
#define DEFAULT_BAUD 9600
#define DEFAULT_STOP 1
#define DEFAULT_PARITY ParityNone
#define UART_ERRORS (MXC_F_UART_INTFL_RX_FRAME_ERROR | \
MXC_F_UART_INTFL_RX_PARITY_ERROR | \
MXC_F_UART_INTFL_RX_OVERRUN)
// Variables for managing the stdio UART
int stdio_uart_inited;
serial_t stdio_uart;
// Variables for interrupt driven
static uart_irq_handler irq_handler;
static uint32_t serial_irq_ids[UART_NUM];
//******************************************************************************
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
// Determine which uart is associated with each pin
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
// Make sure that both pins are pointing to the same uart
MBED_ASSERT(uart != (UARTName)NC);
// Set the obj pointer to the proper uart
obj->uart = (mxc_uart_regs_t*)uart;
// Set the uart index
obj->index = MXC_UART_BASE_TO_INSTANCE(obj->uart);
// Configure the pins
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
// Flush the RX and TX FIFOs, clear the settings
obj->uart->ctrl = ( MXC_F_UART_CTRL_TX_FIFO_FLUSH | MXC_F_UART_CTRL_RX_FIFO_FLUSH);
// Disable interrupts
obj->uart->inten = 0;
obj->uart->intfl = 0;
// Configure to default settings
serial_baud(obj, DEFAULT_BAUD);
serial_format(obj, 8, ParityNone, 1);
// Manage stdio UART
if(uart == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
//******************************************************************************
void serial_free(serial_t *obj)
{
serial_irq_ids[obj->index];
}
//******************************************************************************
void serial_baud(serial_t *obj, int baudrate)
{
uint32_t idiv = 0, ddiv = 0, div = 0;
// Calculate the integer and decimal portions
div = SystemCoreClock / ((baudrate / 100) * 128);
idiv = (div / 100);
ddiv = (div - idiv * 100) * 128 / 100;
obj->uart->baud_int = idiv;
obj->uart->baud_div_128 = ddiv;
// Enable the baud clock
obj->uart->ctrl |= MXC_F_UART_CTRL_BAUD_CLK_EN;
}
//******************************************************************************
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
// Check the validity of the inputs
MBED_ASSERT((data_bits > 4) && (data_bits < 9));
MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) ||
(parity == ParityEven) || (parity == ParityForced1) ||
(parity == ParityForced0));
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2));
// Adjust the stop and data bits
stop_bits -= 1;
data_bits -= 5;
// Adjust the parity setting
int paren = 0, mode = 0;
switch (parity) {
case ParityNone:
paren = 0;
mode = 0;
break;
case ParityOdd :
paren = 1;
mode = 0;
break;
case ParityEven:
paren = 1;
mode = 1;
break;
case ParityForced1:
// Hardware does not support forced parity
MBED_ASSERT(0);
break;
case ParityForced0:
// Hardware does not support forced parity
MBED_ASSERT(0);
break;
default:
paren = 1;
mode = 0;
break;
}
obj->uart->ctrl |= ((data_bits << MXC_F_UART_CTRL_CHAR_LENGTH_POS) |
(stop_bits << MXC_F_UART_CTRL_STOP_BIT_MODE_POS) |
(paren << MXC_F_UART_CTRL_PARITY_ENABLE_POS) |
(mode << MXC_F_UART_CTRL_PARITY_MODE_POS));
}
//******************************************************************************
void uart_handler(mxc_uart_regs_t* uart, int id)
{
// Check for errors or RX Threshold
if(uart->intfl & (MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS)) {
irq_handler(serial_irq_ids[id], RxIrq);
uart->intfl &= ~(MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS);
}
// Check for TX Threshold
if(uart->intfl & MXC_F_UART_INTFL_TX_ALMOST_EMPTY) {
irq_handler(serial_irq_ids[id], TxIrq);
uart->intfl &= ~(MXC_F_UART_INTFL_TX_ALMOST_EMPTY);
}
}
void uart0_handler(void)
{
uart_handler(MXC_UART0, 0);
}
void uart1_handler(void)
{
uart_handler(MXC_UART1, 1);
}
//******************************************************************************
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
//******************************************************************************
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if(obj->index == 0) {
NVIC_SetVector(UART0_IRQn, (uint32_t)uart0_handler);
NVIC_EnableIRQ(UART0_IRQn);
} else {
NVIC_SetVector(UART1_IRQn, (uint32_t)uart1_handler);
NVIC_EnableIRQ(UART1_IRQn);
}
if(irq == RxIrq) {
// Set the RX FIFO Threshold to 1
obj->uart->ctrl &= ~MXC_F_UART_CTRL_RX_THRESHOLD;
obj->uart->ctrl |= 0x1;
// Enable RX FIFO Threshold Interrupt
if(enable) {
// Clear pending interrupts
obj->uart->intfl = 0;
obj->uart->inten |= (MXC_F_UART_INTFL_RX_OVER_THRESHOLD |
UART_ERRORS);
} else {
// Clear pending interrupts
obj->uart->intfl = 0;
obj->uart->inten &= ~(MXC_F_UART_INTFL_RX_OVER_THRESHOLD |
UART_ERRORS);
}
} else if (irq == TxIrq) {
// Enable TX Almost empty Interrupt
if(enable) {
// Clear pending interrupts
obj->uart->intfl = 0;
obj->uart->inten |= MXC_F_UART_INTFL_TX_ALMOST_EMPTY;
} else {
// Clear pending interrupts
obj->uart->intfl = 0;
obj->uart->inten &= ~MXC_F_UART_INTFL_TX_ALMOST_EMPTY;
}
} else {
MBED_ASSERT(0);
}
}
//******************************************************************************
int serial_getc(serial_t *obj)
{
int c;
// Wait for data to be available
while(obj->uart->status & MXC_F_UART_STATUS_RX_FIFO_EMPTY) {}
c = obj->uart->tx_rx_fifo & 0xFF;
return c;
}
//******************************************************************************
void serial_putc(serial_t *obj, int c)
{
// Wait for TXFIFO to not be full
while(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL) {}
obj->uart->tx_rx_fifo = c;
}
//******************************************************************************
int serial_readable(serial_t *obj)
{
return (!(obj->uart->status & MXC_F_UART_STATUS_RX_FIFO_EMPTY));
}
//******************************************************************************
int serial_writable(serial_t *obj)
{
return (!(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL));
}
//******************************************************************************
void serial_clear(serial_t *obj)
{
// Clear the rx and tx fifos
obj->uart->ctrl |= (MXC_F_UART_CTRL_TX_FIFO_FLUSH | MXC_F_UART_CTRL_RX_FIFO_FLUSH );
}
//******************************************************************************
void serial_break_set(serial_t *obj)
{
// Make sure that nothing is being sent
while (!(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_EMPTY));
while (obj->uart->status & MXC_F_UART_STATUS_TX_BUSY);
// Configure the GPIO to outpu 0
gpio_t tx_gpio;
switch (((UARTName)(obj->uart))) {
case UART_0:
gpio_init_out(&tx_gpio, UART0_TX);
break;
case UART_1:
gpio_init_out(&tx_gpio, UART1_TX);
break;
default:
gpio_init_out(&tx_gpio, (PinName)NC);
break;
}
gpio_write(&tx_gpio, 0);
// GPIO is setup now, but we need to maps gpio to the pin
switch (((UARTName)(obj->uart))) {
case UART_0:
MXC_IOMAN->uart0_req &= ~MXC_F_IOMAN_UART_CORE_IO;
MBED_ASSERT((MXC_IOMAN->uart0_ack & (MXC_F_IOMAN_UART_CORE_IO | MXC_F_IOMAN_UART_CORE_IO)) == 0);
break;
case UART_1:
MXC_IOMAN->uart1_req &= ~MXC_F_IOMAN_UART_CORE_IO;
MBED_ASSERT((MXC_IOMAN->uart1_ack & (MXC_F_IOMAN_UART_CORE_IO | MXC_F_IOMAN_UART_CORE_IO)) == 0);
break;
default:
break;
}
}
//******************************************************************************
void serial_break_clear(serial_t *obj)
{
// Configure the GPIO to output 1
gpio_t tx_gpio;
switch (((UARTName)(obj->uart))) {
case UART_0:
gpio_init_out(&tx_gpio, UART0_TX);
break;
case UART_1:
gpio_init_out(&tx_gpio, UART1_TX);
break;
default:
gpio_init_out(&tx_gpio, (PinName)NC);
break;
}
gpio_write(&tx_gpio, 1);
// Renable UART
switch (((UARTName)(obj->uart))) {
case UART_0:
serial_pinout_tx(UART0_TX);
break;
case UART_1:
serial_pinout_tx(UART1_TX);
break;
default:
serial_pinout_tx((PinName)NC);
break;
}
}
//******************************************************************************
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
//******************************************************************************
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
if(FlowControlNone == type) {
// Disable hardware flow control
obj->uart->ctrl &= ~(MXC_F_UART_CTRL_HW_FLOW_CTRL_EN);
return;
}
// Check to see if we can use HW flow control
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
UARTName uart = (UARTName)pinmap_merge(uart_cts, uart_rts);
if((FlowControlCTS == type) || (FlowControlRTSCTS== type)) {
// Make sure pin is in the PinMap
MBED_ASSERT(uart_cts != (UARTName)NC);
// Enable the pin for CTS function
pinmap_pinout(txflow, PinMap_UART_CTS);
}
if((FlowControlRTS == type) || (FlowControlRTSCTS== type)) {
// Make sure pin is in the PinMap
MBED_ASSERT(uart_rts != (UARTName)NC);
// Enable the pin for RTS function
pinmap_pinout(rxflow, PinMap_UART_RTS);
}
if(FlowControlRTSCTS == type){
// Make sure that the pins are pointing to the same UART
MBED_ASSERT(uart != (UARTName)NC);
}
// Enable hardware flow control
obj->uart->ctrl |= MXC_F_UART_CTRL_HW_FLOW_CTRL_EN;
}
const PinMap *serial_tx_pinmap()
{
return PinMap_UART_TX;
}
const PinMap *serial_rx_pinmap()
{
return PinMap_UART_RX;
}
const PinMap *serial_cts_pinmap()
{
return PinMap_UART_CTS;
}
const PinMap *serial_rts_pinmap()
{
return PinMap_UART_RTS;
}